Do you want to publish a course? Click here

Joint Event Extraction along Shortest Dependency Paths using Graph Convolutional Networks

135   0   0.0 ( 0 )
 Added by Ali Balali
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Event extraction (EE) is one of the core information extraction tasks, whose purpose is to automatically identify and extract information about incidents and their actors from texts. This may be beneficial to several domains such as knowledge bases, question answering, information retrieval and summarization tasks, to name a few. The problem of extracting event information from texts is longstanding and usually relies on elaborately designed lexical and syntactic features, which, however, take a large amount of human effort and lack generalization. More recently, deep neural network approaches have been adopted as a means to learn underlying features automatically. However, existing networks do not make full use of syntactic features, which play a fundamental role in capturing very long-range dependencies. Also, most approaches extract each argument of an event separately without considering associations between arguments which ultimately leads to low efficiency, especially in sentences with multiple events. To address the two above-referred problems, we propose a novel joint event extraction framework that aims to extract multiple event triggers and arguments simultaneously by introducing shortest dependency path (SDP) in the dependency graph. We do this by eliminating irrelevant words in the sentence, thus capturing long-range dependencies. Also, an attention-based graph convolutional network is proposed, to carry syntactically related information along the shortest paths between argument candidates that captures and aggregates the latent associations between arguments; a problem that has been overlooked by most of the literature. Our results show a substantial improvement over state-of-the-art methods.



rate research

Read More

Inspired by convolutional neural networks on 1D and 2D data, graph convolutional neural networks (GCNNs) have been developed for various learning tasks on graph data, and have shown superior performance on real-world datasets. Despite their success, there is a dearth of theoretical explorations of GCNN models such as their generalization properties. In this paper, we take a first step towards developing a deeper theoretical understanding of GCNN models by analyzing the stability of single-layer GCNN models and deriving their generalization guarantees in a semi-supervised graph learning setting. In particular, we show that the algorithmic stability of a GCNN model depends upon the largest absolute eigenvalue of its graph convolution filter. Moreover, to ensure the uniform stability needed to provide strong generalization guarantees, the largest absolute eigenvalue must be independent of the graph size. Our results shed new insights on the design of new & improved graph convolution filters with guaranteed algorithmic stability. We evaluate the generalization gap and stability on various real-world graph datasets and show that the empirical results indeed support our theoretical findings. To the best of our knowledge, we are the first to study stability bounds on graph learning in a semi-supervised setting and derive generalization bounds for GCNN models.
Laboratory testing and medication prescription are two of the most important routines in daily clinical practice. Developing an artificial intelligence system that can automatically make lab test imputations and medication recommendations can save cost on potentially redundant lab tests and inform physicians in more effective prescription. We present an intelligent model that can automatically recommend the patients medications based on their incomplete lab tests, and can even accurately estimate the lab values that have not been taken. We model the complex relations between multiple types of medical entities with their inherent features in a heterogeneous graph. Then we learn a distributed representation for each entity in the graph based on graph convolutional networks to make the representations integrate information from multiple types of entities. Since the entity representations incorporate multiple types of medical information, they can be used for multiple medical tasks. In our experiments, we construct a graph to associate patients, encounters, lab tests and medications, and conduct the two tasks: medication recommendation and lab test imputation. The experimental results demonstrate that our model can outperform the state-of-the-art models in both tasks.
Graphs have been widely adopted to denote structural connections between entities. The relations are in many cases heterogeneous, but entangled together and denoted merely as a single edge between a pair of nodes. For example, in a social network graph, users in different latent relationships like friends and colleagues, are usually connected via a bare edge that conceals such intrinsic connections. In this paper, we introduce a novel graph convolutional network (GCN), termed as factorizable graph convolutional network(FactorGCN), that explicitly disentangles such intertwined relations encoded in a graph. FactorGCN takes a simple graph as input, and disentangles it into several factorized graphs, each of which represents a latent and disentangled relation among nodes. The features of the nodes are then aggregated separately in each factorized latent space to produce disentangled features, which further leads to better performances for downstream tasks. We evaluate the proposed FactorGCN both qualitatively and quantitatively on the synthetic and real-world datasets, and demonstrate that it yields truly encouraging results in terms of both disentangling and feature aggregation. Code is publicly available at https://github.com/ihollywhy/FactorGCN.PyTorch.
Recently, neural network based approaches have achieved significant improvement for solving large, complex, graph-structured problems. However, their bottlenecks still need to be addressed, and the advantages of multi-scale information and deep architectures have not been sufficiently exploited. In this paper, we theoretically analyze how existing Graph Convolutional Networks (GCNs) have limited expressive power due to the constraint of the activation functions and their architectures. We generalize spectral graph convolution and deep GCN in block Krylov subspace forms and devise two architectures, both with the potential to be scaled deeper but each making use of the multi-scale information in different ways. We further show that the equivalence of these two architectures can be established under certain conditions. On several node classification tasks, with or without the help of validation, the two new architectures achieve better performance compared to many state-of-the-art methods.
Joint event and causality extraction is a challenging yet essential task in information retrieval and data mining. Recently, pre-trained language models (e.g., BERT) yield state-of-the-art results and dominate in a variety of NLP tasks. However, these models are incapable of imposing external knowledge in domain-specific extraction. Considering the prior knowledge of frequent n-grams that represent cause/effect events may benefit both event and causality extraction, in this paper, we propose convolutional knowledge infusion for frequent n-grams with different windows of length within a joint extraction framework. Knowledge infusion during convolutional filter initialization not only helps the model capture both intra-event (i.e., features in an event cluster) and inter-event (i.e., associations across event clusters) features but also boosts training convergence. Experimental results on the benchmark datasets show that our model significantly outperforms the strong BERT+CSNN baseline.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا