Do you want to publish a course? Click here

Detecting outliers in astronomical images with deep generative networks

67   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the advent of future big-data surveys, automated tools for unsupervised discovery are becoming ever more necessary. In this work, we explore the ability of deep generative networks for detecting outliers in astronomical imaging datasets. The main advantage of such generative models is that they are able to learn complex representations directly from the pixel space. Therefore, these methods enable us to look for subtle morphological deviations which are typically missed by more traditional moment-based approaches. We use a generative model to learn a representation of expected data defined by the training set and then look for deviations from the learned representation by looking for the best reconstruction of a given object. In this first proof-of-concept work, we apply our method to two different test cases. We first show that from a set of simulated galaxies, we are able to detect $sim90%$ of merging galaxies if we train our network only with a sample of isolated ones. We then explore how the presented approach can be used to compare observations and hydrodynamic simulations by identifying observed galaxies not well represented in the models.



rate research

Read More

We present an anomaly detection method using Wasserstein generative adversarial networks (WGANs) on optical galaxy images from the wide-field survey conducted with the Hyper Suprime-Cam (HSC) on the Subaru Telescope in Hawaii. The WGAN is trained on the entire sample, and learns to generate realistic HSC-like images that follow the distribution of the training data. We identify images which are less well-represented in the generators latent space, and which the discriminator flags as less realistic; these are thus anomalous with respect to the rest of the data. We propose a new approach to characterize these anomalies based on a convolutional autoencoder (CAE) to reduce the dimensionality of the residual differences between the real and WGAN-reconstructed images. We construct a subsample of ~9,000 highly anomalous images from our nearly million object sample, and further identify interesting anomalies within these; these include galaxy mergers, tidal features, and extreme star-forming galaxies. The proposed approach could boost unsupervised discovery in the era of big data astrophysics.
Generative Adversarial Networks (GANs) are a class of artificial neural network that can produce realistic, but artificial, images that resemble those in a training set. In typical GAN architectures these images are small, but a variant known as Spatial-GANs (SGANs) can generate arbitrarily large images, provided training images exhibit some level of periodicity. Deep extragalactic imaging surveys meet this criteria due to the cosmological tenet of isotropy. Here we train an SGAN to generate images resembling the iconic Hubble Space Telescope eXtreme Deep Field (XDF). We show that the properties of galaxies in generated images have a high level of fidelity with galaxies in the real XDF in terms of abundance, morphology, magnitude distributions and colours. As a demonstration we have generated a 7.6-billion pixel generative deep field spanning 1.45 degrees. The technique can be generalised to any appropriate imaging training set, offering a new purely data-driven approach for producing realistic mock surveys and synthetic data at scale, in astrophysics and beyond.
State of the art deep generative networks are capable of producing images with such incredible realism that they can be suspected of memorizing training images. It is why it is not uncommon to include visualizations of training set nearest neighbors, to suggest generated images are not simply memorized. We demonstrate this is not sufficient and motivates the need to study memorization/overfitting of deep generators with more scrutiny. This paper addresses this question by i) showing how simple losses are highly effective at reconstructing images for deep generators ii) analyzing the statistics of reconstruction errors when reconstructing training and validation images, which is the standard way to analyze overfitting in machine learning. Using this methodology, this paper shows that overfitting is not detectable in the pure GAN models proposed in the literature, in contrast with those using hybrid adversarial losses, which are amongst the most widely applied generative methods. The paper also shows that standard GAN evaluation metrics fail to capture memorization for some deep generators. Finally, the paper also shows how off-the-shelf GAN generators can be successfully applied to face inpainting and face super-resolution using the proposed reconstruction method, without hybrid adversarial losses.
In medical imaging, outliers can contain hypo/hyper-intensities, minor deformations, or completely altered anatomy. To detect these irregularities it is helpful to learn the features present in both normal and abnormal images. However this is difficult because of the wide range of possible abnormalities and also the number of ways that normal anatomy can vary naturally. As such, we leverage the natural variations in normal anatomy to create a range of synthetic abnormalities. Specifically, the same patch region is extracted from two independent samples and replaced with an interpolation between both patches. The interpolation factor, patch size, and patch location are randomly sampled from uniform distributions. A wide residual encoder decoder is trained to give a pixel-wise prediction of the patch and its interpolation factor. This encourages the network to learn what features to expect normally and to identify where foreign patterns have been introduced. The estimate of the interpolation factor lends itself nicely to the derivation of an outlier score. Meanwhile the pixel-wise output allows for pixel- and subject- level predictions using the same model.
131 - V. Bacu , A. Sabou , T. Stefanut 2019
The continuing monitoring and surveying of the nearby space to detect Near Earth Objects (NEOs) and Near Earth Asteroids (NEAs) are essential because of the threats that this kind of objects impose on the future of our planet. We need more computational resources and advanced algorithms to deal with the exponential growth of the digital cameras performances and to be able to process (in near real-time) data coming from large surveys. This paper presents a software platform called NEARBY that supports automated detection of moving sources (asteroids) among stars from astronomical images. The detection procedure is based on the classic blink detection and, after that, the system supports visual analysis techniques to validate the moving sources, assisted by static and dynamical presentations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا