Do you want to publish a course? Click here

Perturbative 4D conformal field theories and representation theory of diagram algebras

121   0   0.0 ( 0 )
 Added by Sanjaye Ramgoolam
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The correlators of free four dimensional conformal field theories (CFT4) have been shown to be given by amplitudes in two-dimensional $so(4,2)$ equivariant topological field theories (TFT2), by using a vertex operator formalism for the correlators. We show that this can be extended to perturbative interacting conformal field theories, using two representation theoretic constructions. A co-product deformation for the conformal algebra accommodates the equivariant construction of composite operators in the presence of non-additive anomalous dimensions. Explicit expressions for the co-product deformation are given within a sector of $ mathcal{N} =4 $ SYM and for the Wilson-Fischer fixed point near four dimensions. The extension of conformal equivariance beyond integer dimensions (relevant for the Wilson-Fischer fixed point) leads to the definition of an associative diagram algebra $ {bf U}_{*} $, abstracted from $ Uso(d)$ in the limit of large integer $d$, which admits extension of $ Uso(d)$ representation theory to general real (or complex) $d$. The algebra is related, via oscillator realisations, to $so(d)$ equivariant maps and Brauer category diagrams. Tensor representations are constructed where the diagram algebra acts on tensor products of a fundamental diagram representation. A similar diagrammatic algebra ${bf U}_{star ,2}$, related to a general $d$ extension for $ Uso(d,2)$ is defined, and some of its lowest weight representations relevant to the Wilson-Fischer fixed point are described.



rate research

Read More

86 - Johan Henriksson 2020
Conformal field theories play a central role in theoretical physics with many applications ranging from condensed matter to string theory. The conformal bootstrap studies conformal field theories using mathematical consistency conditions and has seen great progress over the last decade. In this thesis we present an implementation of analytic bootstrap methods for perturbative conformal field theories in dimensions greater than two, which we achieve by combining large spin perturbation theory with the Lorentzian inversion formula. In the presence of a small expansion parameter, not necessarily the coupling constant, we develop this into a systematic framework, applicable to a wide range of theories. The first two chapters provide the necessary background and a review of the analytic bootstrap. This is followed by a chapter which describes the method in detail, taking the form of a practical guide to large spin perturbation theory by means of a step-by-step implementation. The second part of the thesis presents several explicit implementations of the framework, taking examples from a number of well-studied conformal field theories. We show how many literature results can be reproduced from a purely bootstrap perspective and how a variety of new results can be derived.
The monster sporadic group is the automorphism group of a central charge $c=24$ vertex operator algebra (VOA) or meromorphic conformal field theory (CFT). In addition to its $c=24$ stress tensor $T(z)$, this theory contains many other conformal vectors of smaller central charge; for example, it admits $48$ commuting $c=frac12$ conformal vectors whose sum is $T(z)$. Such decompositions of the stress tensor allow one to construct new CFTs from the monster CFT in a manner analogous to the Goddard-Kent-Olive (GKO) coset method for affine Lie algebras. We use this procedure to produce evidence for the existence of a number of CFTs with sporadic symmetry groups and employ a variety of techniques, including Hecke operators, modular linear differential equations, and Rademacher sums, to compute the characters of these CFTs. Our examples include (extensions of) nine of the sporadic groups appearing as subquotients of the monster, as well as the simple groups ${}^2{E}_6(2)$ and ${F}_4(2)$ of Lie type. Many of these examples are naturally associated to McKays $widehat{E_8}$ correspondence, and we use the structure of Nortons monstralizer pairs more generally to organize our presentation.
One of the hallmarks of 6D superconformal field theories (SCFTs) is that on a partial tensor branch, all known theories resemble quiver gauge theories with links comprised of 6D conformal matter, a generalization of weakly coupled hypermultiplets. In this paper we construct 4D quiverlike gauge theories in which the links are obtained from compactifications of 6D conformal matter on Riemann surfaces with flavor symmetry fluxes. This includes generalizations of super QCD with exceptional gauge groups and quarks replaced by 4D conformal matter. Just as in super QCD, we find evidence for a conformal window as well as confining gauge group factors depending on the total amount of matter. We also present F-theory realizations of these field theories via elliptically fibered Calabi-Yau fourfolds. Gauge groups (and flavor symmetries) come from 7-branes wrapped on surfaces, conformal matter localizes at the intersection of pairs of 7-branes, and Yukawas between 4D conformal matter localize at points coming from triple intersections of 7-branes. Quantum corrections can also modify the classical moduli space of the F-theory model, matching expectations from effective field theory.
Supersymmetric theories with the same bosonic content but different fermions, aka emph{twins}, were thought to exist only for supergravity. Here we show that pairs of super conformal field theories, for example exotic $mathcal{N}=3$ and $mathcal{N}=1$ theories in $D=4$ spacetime dimensions, can also be twin. We provide evidence from three different perspectives: (i) a twin S-fold construction, (ii) a double-copy argument and (iii) by identifying candidate twin holographically dual gauged supergravity theories. Furthermore, twin W-supergravity theories then follow by applying the double-copy prescription to exotic super conformal field theories.
We prove a generalization of the Verlinde formula to fermionic rational conformal field theories. The fusion coefficients of the fermionic theory are equal to sums of fusion coefficients of its bosonic projection. In particular, fusion coefficients of the fermionic theory connecting two conjugate Ramond fields with the identity are either one or two. Therefore, one is forced to weaken the axioms of fusion algebras for fermionic theories. We show that in the special case of fermionic W(2,d)-algebras these coefficients are given by the dimensions of the irreducible representations of the horizontal subalgebra on the highest weight. As concrete examples we discuss fusion algebras of rational models of fermionic W(2,d)-algebras including minimal models of the $N=1$ super Virasoro algebra as well as $N=1$ super W-algebras SW(3/2,d).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا