Do you want to publish a course? Click here

Superconductivity in hexagonal Nb-Mo-Ru-Rh-Pd high-entropy alloys

313   0   0.0 ( 0 )
 Added by Zhi Ren
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the superconducting properties of new hexagonal Nb$_{10+2x}$Mo$_{35-x}$Ru$_{35-x}$Rh$_{10}$Pd$_{10}$ high-entropy alloys (HEAs) (0 $leq$ $x$ $leq$ 5). With increasing $x$, the superconducting transition temperature $T_{rm c}$ shows a maximum of 6.19 K at $x$ = 2.5, while the zero-temperature upper critical field $B_{rm c2}$(0) increases monotonically, reaching 8.3 T at $x$ = 5. For all $x$ values, the specific heat jump deviates from the Bardeen-Cooper-Schreiffer behavior. In addition, we show that $T_{rm c}$ of these HEAs is not determined mainly by the density of states at the Fermi level and would be enhanced by lowering the valence electron concentration.



rate research

Read More

90 - Jifeng Wu , Bin Liu , Yanwei Cui 2020
High-entropy alloys (HEAs) are at the focus of current research for their diverse properties, including superconductivity and structural polymorphism. However, the polymorphic transition has been observed only in nonsuperconducting HEAs and mostly under high pressure. Here we report the discovery of superconductivity and temperature-driven polymorphism in the (V$_{0.5}$Nb$_{0.5}$)$_{3-x}$Mo$_{x}$Al$_{0.5}$Ga$_{0.5}$ (0.2 $leq$ $x$ $leq$ 1.4) HEAs. It is found that the as-cast HEA is of a single body-centered cubic (bcc) structure for $x$ = 0.2 and a mixture of the bcc and A15 structures for higher $x$ values. Upon annealing, the bcc structure undergoes a polymorphic transformation to the A15 one and all HEAs exhibits bulk superconductivity. For $x$ = 0.2, whereas the bcc polymorph is not superconducting down to 1.8 K, the A15 polymorph has a superconducting transition temperature $T_{rm c}$ of 10.2 K and an estimated zero-temperature upper critical field $B_{rm c2}$(0) of 20.1 T, both of which are the highest among HEA superconductors. With increasing Mo content $x$, both $T_{rm c}$ and $B_{rm c2}$(0) of the A15-type HEAs decrease, yet the large ratio of $B_{rm c2}$(0)/$T_{rm c}$ signifies a disorder-induced enhancement of the upper critical field over a wide $x$ range. The decrease in $T_{rm c}$ is attributed to the decrease in both the electronic specific-heat coefficient and electron-phonon coupling strength. Furthermore, the valence electron count dependence of $T_{rm c}$, which is different from both the binary A15 and other structurally different HEA superconductors, suggests that $T_{rm c}$ may be increased further by reducing the number of valence electrons. Our results not only uncover HEA superconductors of a new structural type, but also provide the first example of polymorphism dependent superconductivity in HEAs.
The binary Re$_{1-x}$Mo$_x$ alloys, known to cover the full range of solid solutions, were successfully synthesized and their crystal structures and physical properties investigated via powder x-ray diffraction, electrical resistivity, magnetic susceptibility, and heat capacity. By varying the Re/Mo ratio we explore the full Re$_{1-x}$Mo$_x$ binary phase diagram, in all its four different solid phases: hcp-Mg ($P6_3/mmc$), $alpha$-Mn ($Ioverline{4}3m$), $beta$-CrFe ($P4_2/mnm$), and bcc-W ($Imoverline{3}m$), of which the second is non-centrosymmetric with the rest being centrosymmetric. All Re$_{1-x}$Mo$_x$ alloys are superconductors, whose critical temperatures exhibit a peculiar phase diagram, characterized by three different superconducting regions. In most alloys the $T_c$ is almost an order of magnitude higher than in pure Re and Mo. Low-temperature electronic specific-heat data evidence a fully-gapped superconducting state, whose enhanced gap magnitude and specific-heat discontinuity suggest a moderately strong electron-phonon coupling across the series. Considering that several $alpha$-Mn-type Re$T$ alloys ($T$ = transition metal) show time-reversal symmetry breaking (TRSB) in the superconducting state, while TRS is preserved in the isostructural Mg$_{10}$Ir$_{19}$B$_{16}$ or Nb$_{0.5}$Os$_{0.5}$, the Re$_{1-x}$Mo$_x$ alloys represent another suitable system for studying the interplay of space-inversion, gauge, and time-reversal symmetries in future experiments expected to probe TRSB in the Re$T$ family.
The upper critical field is a fundamental measure of the strength of superconductivity in a material. It is also a cornerstone for the realization of superconducting magnet applications. The critical field arises because of the Copper pair breaking at a limiting field, which is due to the Pauli paramagnetism of the electrons. The maximal possible magnetic field strength for this effect is commonly known as the Pauli paramagnetic limit given as $mu_0 H_{rm Pauli} approx 1.86{rm [T/K]} cdot T_{rm c}$ for a weak-coupling BCS superconductor. The violation of this limit is only rarely observed. Exceptions include some low-temperature heavy fermion and some strongly anisotropic superconductors. Here, we report on the superconductivity at 9.75 K in the centrosymmetric, cubic $eta$-carbide-type compound Nb$_4$Rh$_2$C$_{1-delta}$, with a normalized specific heat jump of $Delta C/gamma T_{rm c} =$ 1.64. We find that this material has a remarkably high upper critical field of $mu_0 H_{rm c2}{rm (0)}$ =~28.5~T, which is exceeding by far its weak-coupling BCS Pauli paramagnetic limit of $mu_0 H_{rm Pauli}$~=~18.1 T. Determination of the origin and consequences of this effect will represent a significant new direction in the study of critical fields in superconductors.
106 - T. Shang , Wesen Wei , C. Baines 2018
The noncentrosymmetric superconductor Mo$_3$Rh$_2$N, with $T_c = 4.6$ K, adopts a $beta$-Mn-type structure (space group $P$4$_1$32), similar to that of Mo$_3$Al$_2$C. Its bulk superconductivity was characterized by magnetization and heat-capacity measurements, while its microscopic electronic properties were investigated by means of muon-spin rotation and relaxation ($mu$SR). The low-temperature superfluid density, measured via transverse-field (TF)-$mu$SR, evidences a fully-gapped superconducting state with $Delta_0 = 1.73 k_mathrm{B}T_c$, very close to 1.76 $k_mathrm{B}T_c$ - the BCS gap value for the weak coupling case, and a magnetic penetration depth $lambda_0 = 586$ nm. The absence of spontaneous magnetic fields below the onset of superconductivity, as determined by zero-field (ZF)-$mu$SR measurements, hints at a preserved time-reversal symmetry in the superconducting state. Both TF-and ZF-$mu$SR results evidence a spin-singlet pairing in Mo$_3$Rh$_2$N.
We have investigated the plastic deformation properties of non-equiatomic single phase Zr-Nb-Ti-Ta-Hf high-entropy alloys from room temperature up to 300 {deg}C. Uniaxial deformation tests at a constant strain rate of 10$^{-4}$ s$^{-1}$ were performed including incremental tests such as stress-relaxations, strain-rate- and temperature changes in order to determine the thermodynamic activation parameters of the deformation process. The microstructure of deformed samples was characterized by transmission electron microscopy. The strength of the investigated Zr-Nb-Ti-Ta-Hf phase is not as high as the values frequently reported for high-entropy alloys in other systems. We find an activation enthalpy of about 1 eV and a stress dependent activation volume between 0.5 and 2 nm$^3$. The measurement of the activation parameters at higher temperatures is affected by structural changes evolving in the material during plastic deformation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا