Do you want to publish a course? Click here

Realistic Re-evaluation of Knowledge Graph Completion Methods: An Experimental Study

68   0   0.0 ( 0 )
 Added by Farahnaz Akrami
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In the active research area of employing embedding models for knowledge graph completion, particularly for the task of link prediction, most prior studies used two benchmark datasets FB15k and WN18 in evaluating such models. Most triples in these and other datasets in such studies belong to reverse and duplicate relations which exhibit high data redundancy due to semantic duplication, correlation or data incompleteness. This is a case of excessive data leakage---a model is trained using features that otherwise would not be available when the model needs to be applied for real prediction. There are also Cartesian product relations for which every triple formed by the Cartesian product of applicable subjects and objects is a true fact. Link prediction on the aforementioned relations is easy and can be achieved with even better accuracy using straightforward rules instead of sophisticated embedding models. A more fundamental defect of these models is that the link prediction scenario, given such data, is non-existent in the real-world. This paper is the first systematic study with the main objective of assessing the true effectiveness of embedding models when the unrealistic triples are removed. Our experiment results show these models are much less accurate than what we used to perceive. Their poor accuracy renders link prediction a task without truly effective automated solution. Hence, we call for re-investigation of possible effective approaches.



rate research

Read More

Background Knowledge graphs (KGs), especially medical knowledge graphs, are often significantly incomplete, so it necessitating a demand for medical knowledge graph completion (MedKGC). MedKGC can find new facts based on the exited knowledge in the KGs. The path-based knowledge reasoning algorithm is one of the most important approaches to this task. This type of method has received great attention in recent years because of its high performance and interpretability. In fact, traditional methods such as path ranking algorithm (PRA) take the paths between an entity pair as atomic features. However, the medical KGs are very sparse, which makes it difficult to model effective semantic representation for extremely sparse path features. The sparsity in the medical KGs is mainly reflected in the long-tailed distribution of entities and paths. Previous methods merely consider the context structure in the paths of the knowledge graph and ignore the textual semantics of the symbols in the path. Therefore, their performance cannot be further improved due to the two aspects of entity sparseness and path sparseness. To address the above issues, this paper proposes two novel path-based reasoning methods to solve the sparsity issues of entity and path respectively, which adopts the textual semantic information of entities and paths for MedKGC. By using the pre-trained model BERT, combining the textual semantic representations of the entities and the relationships, we model the task of symbolic reasoning in the medical KG as a numerical computing issue in textual semantic representation.
Aiming at expanding few-shot relations coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relations multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relations neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.
Knowledge graph models world knowledge as concepts, entities, and the relationships between them, which has been widely used in many real-world tasks. CCKS 2019 held an evaluation track with 6 tasks and attracted more than 1,600 teams. In this paper, we give an overview of the knowledge graph evaluation tract at CCKS 2019. By reviewing the task definition, successful methods, useful resources, good strategies and research challenges associated with each task in CCKS 2019, this paper can provide a helpful reference for developing knowledge graph applications and conducting future knowledge graph researches.
The task of Knowledge Graph Completion (KGC) aims to automatically infer the missing fact information in Knowledge Graph (KG). In this paper, we take a new perspective that aims to leverage rich user-item interaction data (user interaction data for short) for improving the KGC task. Our work is inspired by the observation that many KG entities correspond to online items in application systems. However, the two kinds of data sources have very different intrinsic characteristics, and it is likely to hurt the original performance using simple fusion strategy. To address this challenge, we propose a novel adversarial learning approach by leveraging user interaction data for the KGC task. Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator. The discriminator takes the learned useful information from user interaction data as input, and gradually enhances the evaluation capacity in order to identify the fake samples generated by the generator. To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks, which will be jointly optimized with the discriminator. Such an approach is effective to alleviate the issues about data heterogeneity and semantic complexity for the KGC task. Extensive experiments on three real-world datasets have demonstrated the effectiveness of our approach on the KGC task.
Knowledge graphs have been demonstrated to be an effective tool for numerous intelligent applications. However, a large amount of valuable knowledge still exists implicitly in the knowledge graphs. To enrich the existing knowledge graphs, recent years witness that many algorithms for link prediction and knowledge graphs embedding have been designed to infer new facts. But most of these studies focus on the static knowledge graphs and ignore the temporal information that reflects the validity of knowledge. Developing the model for temporal knowledge graphs completion is an increasingly important task. In this paper, we build a new tensor decomposition model for temporal knowledge graphs completion inspired by the Tucker decomposition of order 4 tensor. We demonstrate that the proposed model is fully expressive and report state-of-the-art results for several public benchmarks. Additionally, we present several regularization schemes to improve the strategy and study their impact on the proposed model. Experimental studies on three temporal datasets (i.e. ICEWS2014, ICEWS2005-15, GDELT) justify our design and demonstrate that our model outperforms baselines with an explicit margin on link prediction task.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا