Do you want to publish a course? Click here

A laser-plasma interaction experiment for solar burst studies

85   0   0.0 ( 0 )
 Added by Mickael Grech
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new experimental platform based on laser-plasma interaction is proposed to explore the fundamental processes of wave coupling at the origin of interplanetary radio emissions. It is applied to the study of electromagnetic (EM) emission at twice the plasma frequency ($2omega_p$) observed during solar bursts and thought to result from the coalescence of two Langmuir waves (LWs). In the interplanetary medium, the first LW is excited by electron beams, while the second is generated by electrostatic decay of Langmuir waves. In the present experiment, instead of an electron beam, an energetic laser propagating through a plasma excites the primary LW, with characteristics close to those at near-Earth orbit. The EM radiation at $2omega_p$ is observed at different angles. Its intensity, spectral evolution and polarization confirm the LW-coalescence scenario.



rate research

Read More

We present the results of 3-dimensional kinetic simulations and theoretical studies on the formation and evolution of the current sheet in a collisionless plasma during magnetic field annihilation in the ultra-relativistic limit. Annihilation of oppositively directed magnetic fields driven by two laser pulses interacting with underdense plasma target is accompanied by an electromagnetic burst generation. The induced strong non-stationary longitudinal electric field accelerates charged particles within the current sheet. Properties of the laser-plasma target configuration are discussed in the context of the laboratory modeling for charged particle acceleration and gamma flash generation in astrophysics.
We demonstrate that laser reflection acts as a catalyst for superponderomotive electron production in the preplasma formed by relativistic multipicosecond lasers incident on solid density targets. In 1D particle-in-cell simulations, high energy electron production proceeds via two stages of direct laser acceleration, an initial stochastic backward stage, and a final non-stochastic forward stage. The initial stochastic stage, driven by the reflected laser pulse, provides the pre-acceleration needed to enable the final stage to be non-stochastic. Energy gain in the electrostatic potential, which has been frequently considered to enhance stochastic heating, is only of secondary importance. The mechanism underlying the production of high energy electrons by laser pulses incident on solid density targets is of direct relevance to applications involving multipicosecond laser-plasma interactions.
Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interactions begin to enter the relativistic-quantum regime. Using quantum electrodynamics, we compute modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.
276 - Q. S. Feng , L. H. Cao , Z. J. Liu 2019
The strong-coupling mode, called quasimode, will be excited by stimulated Brillouin scattering (SBS) in high-intensity laser-plasma interaction. And SBS of quasimode will compete with SBS of fast mode (or slow mode) in multi-ion species plasmas, thus leading to a low-frequency burst behavior of SBS reflectivity. The competition of quasimode and ion-acoustic wave (IAW) is an important saturation mechanism of SBS in high-intensity laser-plasma interaction. These results give a clear explanation to the low-frequency periodic burst behavior of SBS and should be considered as a saturation mechanism of SBS in high-intensity laser-plasma interaction.
Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the potential for a number of foreseen applications and in the perspective to investigate novel regimes as far as available laser intensities will be increasing. Experiments have demonstrated in a wide range of laser and target parameters the generation of multi-MeV proton and ion beams with unique properties such as ultrashort duration, high brilliance and low emittance. In this paper we give an overview of the state-of-the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives. We describe the main features observed in the experiments, the observed scaling with laser and plasma parameters and the main models used both to interpret experimental data and to suggest new research directions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا