Do you want to publish a course? Click here

M$^5$L: Multi-Modal Multi-Margin Metric Learning for RGBT Tracking

84   0   0.0 ( 0 )
 Added by Chenglong Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Classifying the confusing samples in the course of RGBT tracking is a quite challenging problem, which hasnt got satisfied solution. Existing methods only focus on enlarging the boundary between positive and negative samples, however, the structured information of samples might be harmed, e.g., confusing positive samples are closer to the anchor than normal positive samples.To handle this problem, we propose a novel Multi-Modal Multi-Margin Metric Learning framework, named M$^5$L for RGBT tracking in this paper. In particular, we design a multi-margin structured loss to distinguish the confusing samples which play a most critical role in tracking performance boosting. To alleviate this problem, we additionally enlarge the boundaries between confusing positive samples and normal ones, between confusing negative samples and normal ones with predefined margins, by exploiting the structured information of all samples in each modality.Moreover, a cross-modality constraint is employed to reduce the difference between modalities and push positive samples closer to the anchor than negative ones from two modalities.In addition, to achieve quality-aware RGB and thermal feature fusion, we introduce the modality attentions and learn them using a feature fusion module in our network. Extensive experiments on large-scale datasets testify that our framework clearly improves the tracking performance and outperforms the state-of-the-art RGBT trackers.



rate research

Read More

The task of RGBT tracking aims to take the complementary advantages from visible spectrum and thermal infrared data to achieve robust visual tracking, and receives more and more attention in recent years. Existing works focus on modality-specific information integration by introducing modality weights to achieve adaptive fusion or learning robust feature representations of different modalities. Although these methods could effectively deploy the modality-specific properties, they ignore the potential values of modality-shared cues as well as instance-aware information, which are crucial for effective fusion of different modalities in RGBT tracking. In this paper, we propose a novel Multi-Adapter convolutional Network (MANet) to jointly perform modality-shared, modality-specific and instance-aware feature learning in an end-to-end trained deep framework for RGBT tracking. We design three kinds of adapters within our network. In a specific, the generality adapter is to extract shared object representations, the modality adapter aims at encoding modality-specific information to deploy their complementary advantages, and the instance adapter is to model the appearance properties and temporal variations of a certain object. Moreover, to reduce computational complexity for real-time demand of visual tracking, we design a parallel structure of generic adapter and modality adapter. Extensive experiments on two RGBT tracking benchmark datasets demonstrate the outstanding performance of the proposed tracker against other state-of-the-art RGB and RGBT tracking algorithms.
Multi-object tracking is an important ability for an autonomous vehicle to safely navigate a traffic scene. Current state-of-the-art follows the tracking-by-detection paradigm where existing tracks are associated with detected objects through some distance metric. The key challenges to increase tracking accuracy lie in data association and track life cycle management. We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules to provide robust and data-driven tracking results. First, we learn how to fuse features from 2D images and 3D LiDAR point clouds to capture the appearance and geometric information of an object. Second, we propose to learn a metric that combines the Mahalanobis and feature distances when comparing a track and a new detection in data association. And third, we propose to learn when to initialize a track from an unmatched object detection. Through extensive quantitative and qualitative results, we show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
Multi-target multi-camera tracking (MTMCT) systems track targets across cameras. Due to the continuity of target trajectories, tracking systems usually restrict their data association within a local neighborhood. In single camera tracking, local neighborhood refers to consecutive frames; in multi-camera tracking, it refers to neighboring cameras that the target may appear successively. For similarity estimation, tracking systems often adopt appearance features learned from the re-identification (re-ID) perspective. Different from tracking, re-ID usually does not have access to the trajectory cues that can limit the search space to a local neighborhood. Due to its global matching property, the re-ID perspective requires to learn global appearance features. We argue that the mismatch between the local matching procedure in tracking and the global nature of re-ID appearance features may compromise MTMCT performance. To fit the local matching procedure in MTMCT, in this work, we introduce locality aware appearance metric (LAAM). Specifically, we design an intra-camera metric for single camera tracking, and an inter-camera metric for multi-camera tracking. Both metrics are trained with data pairs sampled from their corresponding local neighborhoods, as opposed to global sampling in the re-ID perspective. We show that the locally learned metrics can be successfully applied on top of several globally learned re-ID features. With the proposed method, we report new state-of-the-art performance on the DukeMTMC dataset, and a substantial improvement on the CityFlow dataset.
RGBT tracking has attracted increasing attention since RGB and thermal infrared data have strong complementary advantages, which could make trackers all-day and all-weather work. However, how to effectively represent RGBT data for visual tracking remains unstudied well. Existing works usually focus on extracting modality-shared or modality-specific information, but the potentials of these two cues are not well explored and exploited in RGBT tracking. In this paper, we propose a novel multi-adapter network to jointly perform modality-shared, modality-specific and instance-aware target representation learning for RGBT tracking. To this end, we design three kinds of adapters within an end-to-end deep learning framework. In specific, we use the modified VGG-M as the generality adapter to extract the modality-shared target representations.To extract the modality-specific features while reducing the computational complexity, we design a modality adapter, which adds a small block to the generality adapter in each layer and each modality in a parallel manner. Such a design could learn multilevel modality-specific representations with a modest number of parameters as the vast majority of parameters are shared with the generality adapter. We also design instance adapter to capture the appearance properties and temporal variations of a certain target. Moreover, to enhance the shared and specific features, we employ the loss of multiple kernel maximum mean discrepancy to measure the distribution divergence of different modal features and integrate it into each layer for more robust representation learning. Extensive experiments on two RGBT tracking benchmark datasets demonstrate the outstanding performance of the proposed tracker against the state-of-the-art methods.
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We therefore propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization and each sub-problem can be efficiently solved. Experiments on two challenging real-world image datasets demonstrate the effectiveness and superiority of the proposed method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا