Pulsed fraction of super-critical column accretion flows onto neutron stars: modeling of ultraluminous X-ray pulsars


Abstract in English

We calculate the pulsed fraction (PF) of the super-critical column accretion flows onto magnetized neutron stars (NSs), of which the magnetic axis is misaligned with the rotation axis, based on the simulation results by Kawashima et al.(2016, PASJ, 68, 83). Here, we solve the geodesic equation for light in the Schwarzschild spacetime in order to take into account the light bending effect. The gravitational redshift and the relativistic doppler effect from gas motions of the accretion columns are also incorporated. The pulsed emission appears since the observed luminosity, which exceeds the Eddington luminosity for the stellar-mass black holes, periodically changes via precession of the column caused by the rotation of the NS. The PF tends to increase as $theta_{rm obs}$ approaching to $theta_{rm B}$, where $theta_{rm obs}$ and $theta_{rm B}$ are the observers viewing angle and the polar angle of the magnetic axis measured from the rotation axis. The maximum PF is around 50 %. Also, we find that the PF becomes less than 5 % for $theta_{rm obs} lesssim 5^circ$ or for $theta_{rm B} lesssim 5^circ$. Our results are consistent with observations of ultraluminous X-ray pulsars (ULXPs) with few exceptions, since the ULXPs mostly exhibit the PF of $lesssim$ 50 %. Our present study supports the hypothesis that the ULXPs are powered by the super-critical column accretion onto NSs.

Download