No Arabic abstract
We demonstrate dispersive readout of the spin of an ensemble of Nitrogen-Vacancy centers in a high-quality dielectric microwave resonator at room temperature. The spin state is inferred from the reflection phase of a microwave signal probing the resonator. Time-dependent tracking of the spin state is demonstrated, and is employed to measure the T1 relaxation time of the spin ensemble. Dispersive readout provides a microwave interface to solid state spins, translating a spin signal into a microwave phase shift. We estimate that its sensitivity can outperform optical readout schemes, owing to the high accuracy achievable in a measurement of phase. The scheme is moreover applicable to optically inactive spin defects and it is non-destructive, which renders it insensitive to several systematic errors of optical readout and enables the use of quantum feedback.
We analyze a readout scheme for Majorana qubits based on dispersive coupling to a resonator. We consider two variants of Majorana qubits: the Majorana transmon and the Majorana box qubit. In both cases, the qubit-resonator interaction can produce sizeable dispersive shifts in the MHz range for reasonable system parameters, allowing for submicrosecond readout with high fidelity. For Majorana transmons, the light-matter interaction used for readout manifestly conserves Majorana parity, which leads to a notion of quantum nondemolition (QND) readout that is stronger than for conventional charge qubits. In contrast, Majorana box qubits only recover an approximately QND readout mechanism in the dispersive limit where the resonator detuning is large. We also compare dispersive readout to longitudinal readout for the Majorana box qubit. We show that the latter gives faster and higher fidelity readout for reasonable parameters, while having the additional advantage of being manifestly QND, and so may prove to be a better readout mechanism for these systems.
High-fidelity qubit measurements play a crucial role in quantum computation, communication, and metrology. In recent experiments, it has been shown that readout fidelity may be improved by performing repeated quantum non-demolition (QND) readouts of a qubits state through an ancilla. For a qubit encoded in a two-level system, the fidelity of such schemes is limited by the fact that a single error can destroy the information in the qubit. On the other hand, if a bosonic system is used, this fundamental limit could be overcome by utilizing higher levels such that a single error still leaves states distinguishable. In this work, we present a robust readout scheme, applicable to bosonic systems dispersively coupled to an ancilla, which leverages both repeated QND readouts and higher-level encodings to asymptotically suppress the effects of qubit/cavity relaxation and individual measurement infidelity. We calculate the measurement fidelity in terms of general experimental parameters, provide an information-theoretic description of the scheme, and describe its application to several encodings, including cat and binomial codes.
We propose a scheme to read out the spin of a single electron quantum bit in a surface Paul trap using oscillating magnetic field gradients. The readout sequence is composed of cooling, driving, amplification and detection of the electrons motion. We study the scheme in the presence of noise and trap anharmonicities at liquid helium temperatures. An analysis of the the four procedures shows short measurement times ($25~mu$s) and high fidelities ($99.7%$) are achievable with realistic experimental parameters. Our scheme performs the function of fluorescence detection in ion trapping schemes, highlighting the potential to built all-electric quantum computers based on trapped electron spin qubits.
The speed of quantum gates and measurements is a decisive factor for the overall fidelity of quantum protocols when performed on physical qubits with finite coherence time. Reducing the time required to distinguish qubit states with high fidelity is therefore a critical goal in quantum information science. The state-of-the-art readout of superconducting qubits is based on the dispersive interaction with a readout resonator. Here, we bring this technique to its current limit and demonstrate how the careful design of system parameters leads to fast and high-fidelity measurements without affecting qubit coherence. We achieve this result by increasing the dispersive interaction strength, by choosing an optimal linewidth of the readout resonator, by employing a Purcell filter, and by utilizing phase-sensitive parametric amplification. In our experiment, we measure 98.25% readout fidelity in only 48 ns, when minimizing read-out time, and 99.2% in 88 ns, when maximizing the fidelity, limited predominantly by the qubit lifetime of 7.6 us. The presented scheme is also expected to be suitable for integration into a multiplexed readout architecture.
Medium-scale ensembles of coupled qubits offer a platform for near-term quantum technologies including computing, sensing, and the study of mesoscopic quantum systems. Atom-like emitters in solids have emerged as promising quantum memories, with demonstrations of spin-spin entanglement by optical and magnetic interactions. Magnetic coupling in particular is attractive for efficient and deterministic entanglement gates, but raises the problem of individual spin addressing at the necessary nanometer-scale separation. Current super-resolution techniques can reach this resolution, but are destructive to the states of nearby qubits. Here, we demonstrate the measurement of individual qubit states in a sub-diffraction cluster by selectively exciting spectrally distinguishable nitrogen vacancy (NV) centers. We demonstrate super-resolution localization of single centers with nanometer spatial resolution, as well as individual control and readout of spin populations. These measurements indicate a readout-induced crosstalk on non-addressed qubits below $4times10^{-2}$. This approach opens the door to high-speed control and measurement of qubit registers in mesoscopic spin clusters, with applications ranging from entanglement-enhanced sensors to error-corrected qubit registers to multiplexed quantum repeater nodes.