No Arabic abstract
In this paper, we propose an end-to-end post-filter method with deep attention fusion features for monaural speaker-independent speech separation. At first, a time-frequency domain speech separation method is applied as the pre-separation stage. The aim of pre-separation stage is to separate the mixture preliminarily. Although this stage can separate the mixture, it still contains the residual interference. In order to enhance the pre-separated speech and improve the separation performance further, the end-to-end post-filter (E2EPF) with deep attention fusion features is proposed. The E2EPF can make full use of the prior knowledge of the pre-separated speech, which contributes to speech separation. It is a fully convolutional speech separation network and uses the waveform as the input features. Firstly, the 1-D convolutional layer is utilized to extract the deep representation features for the mixture and pre-separated signals in the time domain. Secondly, to pay more attention to the outputs of the pre-separation stage, an attention module is applied to acquire deep attention fusion features, which are extracted by computing the similarity between the mixture and the pre-separated speech. These deep attention fusion features are conducive to reduce the interference and enhance the pre-separated speech. Finally, these features are sent to the post-filter to estimate each target signals. Experimental results on the WSJ0-2mix dataset show that the proposed method outperforms the state-of-the-art speech separation method. Compared with the pre-separation method, our proposed method can acquire 64.1%, 60.2%, 25.6% and 7.5% relative improvements in scale-invariant source-to-noise ratio (SI-SNR), the signal-to-distortion ratio (SDR), the perceptual evaluation of speech quality (PESQ) and the short-time objective intelligibility (STOI) measures, respectively.
Recurrent neural network transducers (RNN-T) have been successfully applied in end-to-end speech recognition. However, the recurrent structure makes it difficult for parallelization . In this paper, we propose a self-attention transducer (SA-T) for speech recognition. RNNs are replaced with self-attention blocks, which are powerful to model long-term dependencies inside sequences and able to be efficiently parallelized. Furthermore, a path-aware regularization is proposed to assist SA-T to learn alignments and improve the performance. Additionally, a chunk-flow mechanism is utilized to achieve online decoding. All experiments are conducted on a Mandarin Chinese dataset AISHELL-1. The results demonstrate that our proposed approach achieves a 21.3% relative reduction in character error rate compared with the baseline RNN-T. In addition, the SA-T with chunk-flow mechanism can perform online decoding with only a little degradation of the performance.
Cognitive Behavioral Therapy (CBT) is a goal-oriented psychotherapy for mental health concerns implemented in a conversational setting with broad empirical support for its effectiveness across a range of presenting problems and client populations. The quality of a CBT session is typically assessed by trained human raters who manually assign pre-defined session-level behavioral codes. In this paper, we develop an end-to-end pipeline that converts speech audio to diarized and transcribed text and extracts linguistic features to code the CBT sessions automatically. We investigate both word-level and utterance-level features and propose feature fusion strategies to combine them. The utterance level features include dialog act tags as well as behavioral codes drawn from another well-known talk psychotherapy called Motivational Interviewing (MI). We propose a novel method to augment the word-based features with the utterance level tags for subsequent CBT code estimation. Experiments show that our new fusion strategy outperforms all the studied features, both when used individually and when fused by direct concatenation. We also find that incorporating a sentence segmentation module can further improve the overall system given the preponderance of multi-utterance conversational turns in CBT sessions.
Hand-crafted spatial features (e.g., inter-channel phase difference, IPD) play a fundamental role in recent deep learning based multi-channel speech separation (MCSS) methods. However, these manually designed spatial features are hard to incorporate into the end-to-end optimized MCSS framework. In this work, we propose an integrated architecture for learning spatial features directly from the multi-channel speech waveforms within an end-to-end speech separation framework. In this architecture, time-domain filters spanning signal channels are trained to perform adaptive spatial filtering. These filters are implemented by a 2d convolution (conv2d) layer and their parameters are optimized using a speech separation objective function in a purely data-driven fashion. Furthermore, inspired by the IPD formulation, we design a conv2d kernel to compute the inter-channel convolution differences (ICDs), which are expected to provide the spatial cues that help to distinguish the directional sources. Evaluation results on simulated multi-channel reverberant WSJ0 2-mix dataset demonstrate that our proposed ICD based MCSS model improves the overall signal-to-distortion ratio by 10.4% over the IPD based MCSS model.
Recently, end-to-end sequence-to-sequence models for speech recognition have gained significant interest in the research community. While previous architecture choices revolve around time-delay neural networks (TDNN) and long short-term memory (LSTM) recurrent neural networks, we propose to use self-attention via the Transformer architecture as an alternative. Our analysis shows that deep Transformer networks with high learning capacity are able to exceed performance from previous end-to-end approaches and even match the conventional hybrid systems. Moreover, we trained very deep models with up to 48 Transformer layers for both encoder and decoders combined with stochastic residual connections, which greatly improve generalizability and training efficiency. The resulting models outperform all previous end-to-end ASR approaches on the Switchboard benchmark. An ensemble of these models achieve 9.9% and 17.7% WER on Switchboard and CallHome test sets respectively. This finding brings our end-to-end models to competitive levels with previous hybrid systems. Further, with model ensembling the Transformers can outperform certain hybrid systems, which are more complicated in terms of both structure and training procedure.
Transformers are powerful neural architectures that allow integrating different modalities using attention mechanisms. In this paper, we leverage the neural transformer architectures for multi-channel speech recognition systems, where the spectral and spatial information collected from different microphones are integrated using attention layers. Our multi-channel transformer network mainly consists of three parts: channel-wise self attention layers (CSA), cross-channel attention layers (CCA), and multi-channel encoder-decoder attention layers (EDA). The CSA and CCA layers encode the contextual relationship within and between channels and across time, respectively. The channel-attended outputs from CSA and CCA are then fed into the EDA layers to help decode the next token given the preceding ones. The experiments show that in a far-field in-house dataset, our method outperforms the baseline single-channel transformer, as well as the super-directive and neural beamformers cascaded with the transformers.