No Arabic abstract
Recent observational results show that very low mass stars and brown dwarfs are able to host close-in rocky planets. Low-mass stars are the most abundant stars in the Galaxy and the formation efficiency of their planetary systems is relevant in the computation of a global probability of finding Earth-like planets inside habitable zones. Tidal forces and relativistic effects are relevant in the latest dynamical evolution of planets around low-mass stars and their effect on the planetary formation efficiency still needs to be addressed. Our goal is to evaluate the impact of tidal forces and relativistic effects on the formation of rocky planets around a star close to the substellar mass limit, in terms of the resulting planetary architectures and its distribution according to the corresponding evolving habitable zone. Thus, we performed a set of $N$-body simulations spanning the first 100~Myr of the evolution of two systems composed respectively by 224 embryos with a total mass 0.25M$_oplus$ and 74 embryos with a total mass 3 M$_oplus$ around a central object of 0.08~M$_odot$. For these two scenarios, we compared the planetary architectures that result from simulations that are purely gravitational with those from simulations that include the early contraction and spin-up of the central object, the distortions and dissipation tidal terms and general relativistic effects. We found that including these effects allows the formation and survival of a close-in population located in the habitable zone of the system. This means that both effects are relevant during the formation of rocky planets and their early evolution around stars close to the substellar mass limit, in particular when low-mass planetary embryos are involved.
We show how standard Newtonian N-body simulations can be interpreted in terms of the weak-field limit of general relativity by employing the recently developed Newtonian motion gauge. Our framework allows the inclusion of radiation perturbations and the non-linear evolution of matter. We show how to construct the weak-field metric by combining Newtonian simulations with results from Einstein-Boltzmann codes. We discuss observational effects on weak lensing and ray tracing, identifying important relativistic corrections.
Recent improvements to GPU hardware and the symplectic N-body code GENGA allow for unprecedented resolution in simulations of planet formation. In this paper, we report results from high-resolution N-body simulations of terrestrial planet formation that are mostly direct continuation of our previous 10 Myr simulations (Woo et al. 2021a) until 150 Myr. By assuming that Jupiter and Saturn have always maintained their current eccentric orbits (EJS), we are able to achieve a reasonably good match to the current inner solar system architecture. However, due to the strong radial mixing that occurs in the EJS scenario, it has difficulties in explaining the known isotopic differences between bodies in the inner solar system, most notably between Earth and Mars. On the other hand, assuming initially circular orbits for Jupiter and Saturn (CJS) can reproduce the observed low degree of radial mixing in the inner solar system, while failing to reproduce the current architecture of the inner solar system. These outcomes suggest a possible paradox between dynamical structure and cosmochemical data for the terrestrial planets within the classical formation scenario.
M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun -- are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.
We present here the detection of a system of four low-mass planets around the bright (V=5.5) and close-by (6.5 pc) star HD219134. This is the first result of the Rocky Planet Search program with HARPS-N on the TNG in La Palma. The inner planet orbits the star in 3.0937 +/-0.0004 days, on a quasi-circular orbit with a semi-major axis of 0.0382 +/- 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD219134b the nearest known transiting planet to date. From the amplitude of the radial-velocity variation (2.33 +/- 0.24 m/s) and observed depth of the transit (359 +/- 38 ppm), the planet mass and radius are estimated to be 4.46 +/- 0.47 M_{oplus} and 1.606 +/- 0.086 R_{oplus} leading to a mean density of 5.89 +/- 1.17 g/cc, suggesting a rocky composition. One additional planet with minimum mass of 2.67 +/- 0.59 M_{oplus} moves on a close-in, quasi-circular orbit with a period of 6.765 +/- 0.005 days. The third planet in the system has a period of 46.78 +/- 0.16 days and a minimum mass of 8.7 +/- 1.1 M{oplus}, at 0.234 +/- 0.002 AU from the star. Its eccentricity is 0.32 +/- 0.14. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 +/- 0.1 days). The planetary origin of the signal is, however, the preferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 62 +/- 6 M_{oplus} orbits the star in 1190 days, on an eccentric orbit (e=0.27 +/- 0.11) at a distance of 2.14 +/- 0.27 AU.
Measured disk masses seem to be too low to form the observed population of planetary systems. In this context, we develop a population synthesis code in the pebble accretion scenario, to analyse the disk mass dependence on planet formation around low mass stars. We base our model on the analytical sequential model presented in Ormel et al. 2017 and analyse the populations resulting from varying initial disk mass distributions. Starting out with seeds the mass of Ceres near the ice-line formed by streaming instability, we grow the planets using the Pebble Accretion process and migrate them inwards using Type-I migration. The next planets are formed sequentially after the previous planet crosses the ice-line. We explore different initial distributions of disk masses to show the dependence of this parameter with the final planetary population. Our results show that compact close-in resonant systems can be pretty common around M-dwarfs between $0.09-0.2$ $M_{odot}$ only when the disks considered are more massive than what is being observed by sub-mm disk surveys. The minimum disk mass to form a Mars-like planet is found to be about $2 times 10^{-3}$ $M_{odot}$. Small variation in the disk mass distribution also manifest in the simulated planet distribution. The paradox of disk masses might be caused by an underestimation of the disk masses in observations, by a rapid depletion of mass in disks by planets growing within a million years or by deficiencies in our current planet formation picture.