A Scattering Amplitude in Conformal Field Theory


Abstract in English

We define form factors and scattering amplitudes in Conformal Field Theory as the coefficient of the singularity of the Fourier transform of time-ordered correlation functions, as $p^2 to 0$. In particular, we study a form factor $F(s,t,u)$ obtained from a four-point function of identical scalar primary operators. We show that $F$ is crossing symmetric, analytic and it has a partial wave expansion. We illustrate our findings in the 3d Ising model, perturbative fixed points and holographic CFTs.

Download