Do you want to publish a course? Click here

Design of the HARMONI Pyramid WFS module

78   0   0.0 ( 0 )
 Added by Noah Schwartz
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Current designs for all three extremely large telescopes show the overwhelming adoption of the pyramid wavefront sensor (P-WFS) as the WFS of choice for adaptive optics (AO) systems sensing on natural guide stars (NGS) or extended objects. The key advantages of the P-WFS over the Shack-Hartmann are known and are mainly provided by the improved sensitivity (fainter NGS) and reduced sensitivity to spatial aliasing. However, robustness and tolerances of the P-WFS for the ELTs are not currently well understood. In this paper, we present simulation results for the single-conjugate AO mode of HARMONI, a visible and near-infrared integral field spectrograph for the European Extremely Large Telescope. We first explore the wavefront sensing issues related to the telescope itself; namely the island effect (i.e. differential piston) and M1 segments phasing errors. We present mitigation strategies to the island effect and their performance. We then focus on some performance optimisation aspects of the AO design to explore the impact of the RTC latency and the optical gain issues, which will in particular affect the high-contrast mode of HARMONI. Finally, we investigate the influence of the quality of glass pyramid prism itself, and of optical aberrations on the final AO performance. By relaxing the tolerances on the fabrication of the prism, we are able to reduce hardware costs and simplify integration. We show the importance of calibration (i.e. updating the control matrix) to capture any displacement of the telescope pupil and rotation of the support structure for M4. We also show the importance of the number of pixels used for wavefront sensing to relax tolerances of the pyramid prism. Finally, we present a detailed optical design of the pyramid prism, central element of the P-WFS.

rate research

Read More

Harmoni is the ELTs first light visible and near-infrared integral field spectrograph. It will provide four different spatial scales, ranging from coarse spaxels of 60 x 30 mas best suited for seeing limited observations, to 4 mas spaxels that Nyquist sample the diffraction limited point spread function of the ELT at near-infrared wavelengths. Each spaxel scale may be combined with eleven spectral settings, that provide a range of spectral resolving powers from R 3500 to R 20000 and instantaneous wavelength coverage spanning the 0.47 - 2.45 {mu}m wavelength range of the instrument. The consortium consists of several institutes in Europe under leadership of Oxford University. Harmoni is starting its Final Design Phase after a Preliminary Design Phase in November, 2017. The CRAL has the responsibility of the Integral Field Unit design linking the Preoptics to the 4 Spectrographs. It is composed of a field splitter associated with a relay system and an image slicer that create from a rectangular Field of View a very long (540mm) output slit for each spectrograph. In this paper, the preliminary design and performances of Harmoni Image Slicer will be presented including image quality, pupil distortion and slit geometry. It has been designed by CRAL for Harmoni PDR in November, 2017. Special emphases will be put on straylight analysis and slice diffraction. The optimisation of the manufacturing and slit geometry will also be reported.
The Southern Robotic Adaptive Optics (SRAO) instrument will bring the proven high-efficiency capabilities of Robo-AO to the Southern-Hemisphere, providing the unique capability to image with high-angular-resolution thousands of targets per year across the entire sky. Deployed on the modern 4.1m SOAR telescope located on Cerro Tololo, the NGS-AO system will use an innovative dual-knife-edge wavefront sensor, similar to a pyramid sensor, to enable guiding on targets down to V=16 with diffraction limited resolution in the NIR. The dual-knife-edge wavefront sensor can be up to two orders of magnitude less costly than custom glass pyramids, with similar wavefront error sensitivity and minimal chromatic aberrations. SRAO is capable of observing hundreds of targets a night through automation, allowing confirmation and characterization of the large number of exoplanets produced by current and future missions.
Adaptive optics systems correct atmospheric turbulence in real time. Most adaptive optics systems used routinely correct in the near infrared, at wavelengths greater than 1 micron. MagAO- X is a new extreme adaptive optics (ExAO) instrument that will offer corrections at visible-to- near-IR wavelengths. MagAO-X will achieve Strehl ratios greater than 70% at H-alpha when running the 2040 actuator deformable mirror at 3.6 kHz. A visible pyramid wavefront sensor (PWFS) optimized for sensing at 600-1000 nm wavelengths will provide the high-order wavefront sensing on MagAO- X. We present the optical design and predicted performance of the MagAO-X pyramid wavefront sensor.
300 - D. Walton 2014
LOFT (Large Observatory for X-ray Timing) is an X-ray timing observatory that, with four other candidates, was considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30 keV range, which is designed to perform X-ray timing of compact objects with unprecedented resolution down to millisecond time scales. Although LOFT was not downselected for launch, during the assessment most of the trade-offs have been closed, leading to a robust and well documented design that will be reproposed in future ESA calls. The building block of the LAD instrument is the Module, and in this paper we summarize the rationale for the module concept, the characteristics of the module and the trade-offs/optimisations which have led to the current design.
Combining high-contrast imaging with medium-resolution spectroscopy has been shown to significantly boost the direct detection of exoplanets. HARMONI, one of the first-light instruments to be mounted on ESOs ELT, will be equipped with a single-conjugated adaptive optics system to reach the diffraction limit of the ELT in H and K bands, a high-contrast module dedicated to exoplanet imaging, and a medium-resolution (up to R = 17 000) optical and near-infrared integral field spectrograph. Combined together, these systems will provide unprecedented contrast limits at separations between 50 and 400 mas. In this paper, we estimate the capabilities of the HARMONI high-contrast module for the direct detection of young giant exoplanets. We use an end-to-end model of the instrument to simulate observations based on realistic observing scenarios and conditions. We analyze these data with the so-called molecule mapping technique combined to a matched-filter approach, in order to disentangle the companions from the host star and tellurics, and increase the S/N of the planetary signal. We detect planets above 5-sigma at contrasts up to 16 mag and separations down to 75 mas in several spectral configurations of the instrument. We show that molecule mapping allows the detection of companions up to 2.5 mag fainter compared to state-of-the-art high-contrast imaging techniques based on angular differential imaging. We also demonstrate that the performance is not strongly affected by the spectral type of the host star, and that we reach close sensitivities for the best three quartiles of observing conditions at Armazones, which means that HARMONI could be used in near-critical observations during 60 to 70% of telescope time at the ELT. Finally, we simulate planets from population synthesis models to further explore the parameter space that HARMONI and its high-contrast module will soon open.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا