Do you want to publish a course? Click here

Disk structure around the Class I protostar L1489 IRS revealed by ALMA: a warped disk system

95   0   0.0 ( 0 )
 Added by Jinshi Sai
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have observed the Class I protostar L1489 IRS with the Atacama Millimeter/submillimeter Array (ALMA) in Band 6. The C$^{18}$O $J=$2-1 line emission shows flattened and non-axisymmetric structures in the same direction as its velocity gradient due to rotation. We discovered that the C$^{18}$O emission shows dips at a radius of ~200-300 au while the 1.3 mm continuum emission extends smoothly up to r~400 au. At the radius of the C$^{18}$O dips, the rotational axis of the outer portion appears to be tilted by ~15 degrees from that of the inner component. Both the inner and outer components with respect to the C$^{18}$O dips exhibit the $r^{-0.5}$ Keplerian rotation profiles until r~600 au. These results not only indicate that a Keplerian disk extends up to ~600 au but also that the disk is warped. We constructed a three dimensional warped disk model rotating at the Keplerian velocity, and demonstrated that the warped disk model reproduces main observed features in the velocity channel maps and the PV diagrams. Such a warped disk system can form by mass accretion from a misaligned envelope. We also discuss a possible disk evolution scenario based on comparisons of disk radii and masses between Class I and Class II sources.



rate research

Read More

77 - Luis A. Zapata 2020
We present sensitive and high angular resolution ($sim$0.2-0.3$$) (sub)millimeter (230 and 345 GHz) continuum and CO(2$-$1)/CO(3$-$2) line archive observations of the disk star system in UX Tauri carried out with ALMA (The Atacama Large Millimeter/Submillimeter Array). These observations reveal the gas and dusty disk surrounding the young star UX Tauri A with a large signal-to-noise ratio ($>$400 in the continuum and $>$50 in the line), and for the first time is detected the molecular gas emission associated with the disk of UX Tauri C (with a size for the disk of $<$56 au). No (sub)millimeter continuum emission is detected at 5$sigma$-level (0.2 mJy at 0.85 mm) associated with UX Tauri C. For the component UX Tauri C, we estimate a dust disk mass of $leq$ 0.05 M$_oplus$. Additionally, we report a strong tidal disk interaction between both disks UX Tauri A/C, separated 360 au in projected distance. The CO line observations reveal marked spiral arms in the disk of UX Tauri A and an extended redshifted stream of gas associated with the UX Tauri C disk. No spiral arms are observed in the dust continuum emission of UX Tauri A. Assuming a Keplerian rotation we estimate the enclosed masses (disk$+$star) from their radial velocities in 1.4 $pm$ 0.6 M$_odot$ for UX Tauri A, and 70 $pm$ 30 / $sin i$ Jupiter masses for UX Tauri C (the latter coincides with the mass upper limit value for a brown dwarf). The observational evidence presented here lead us to propose that UX Tauri C is having a close approach of a possible wide, evolving and eccentric orbit around the disk of UX Tauri A causing the formation of spiral arms and the stream of molecular gas falling towards UX Tauri C.
Sub-millimeter spectral line and continuum emission from the protoplanetary disks and envelopes of protostars are powerful probes of their structure, chemistry, and dynamics. Here we present a benchmark study of our modeling code, RadChemT, that for the first time uses a chemical model to reproduce ALMA C$^{18}$O (2-1) and CARMA $^{12}$CO (1-0) and N$_{2}$H$^{+}$ (1-0) observations of L1527, that allow us to distinguish the disk, the infalling envelope and outflow of this Class 0/I protostar. RadChemT combines dynamics, radiative transfer, gas chemistry and gas-grain reactions to generate models which can be directly compared with observations for individual protostars. Rather than individually fit abundances to a large number of free parameters, we aim to best match the spectral line maps by (i) adopting a physical model based on density structure and luminosity derived primarily from previous work that fit SED and 2D imaging data, updating it to include a narrow jet detected in CARMA and ALMA data near ($leq 75$au) the protostar, and then (ii) computing the resulting astrochemical abundances for 292 chemical species. Our model reproduces the C$^{18}$O and N$_{2}$H$^{+}$ line strengths within a factor of 3.0; this is encouraging considering the pronounced abundance variation (factor $> 10^3$) between the outflow shell and CO snowline region near the midplane. Further, our modeling confirms suggestions regarding the anti-correlation between N$_{2}$H$^{+}$ and the CO snowline between 400 au to 2,000 au from the central star. Our modeling tools represent a new and powerful capability with which to exploit the richness of spectral line imaging provided by modern submillimeter interferometers.
Complex organic molecules (COMs), which are the seeds of prebiotic material and precursors of amino acids and sugars, form in the icy mantles of circumstellar dust grains but cannot be detected remotely unless they are heated and released to the gas phase. Around solar-mass stars, water and COMs only sublimate in the inner few au of the disk, making them extremely difficult to spatially resolve and study. Sudden increases in the luminosity of the central star will quickly expand the sublimation front (so-called snow line) to larger radii, as seen previously in the FU Ori outburst of the young star V883 Ori. In this paper, we take advantage of the rapid increase in disk temperature of V883 Ori to detect and analyze five different COMs, methanol, acetone, acetonitrile, acetaldehyde, and methyl formate, in spatially-resolved submillimeter observations. The COMs abundances in V883 Ori is in reasonable agreement with cometary values. This result suggests that outbursting young stars can provide a special opportunity to study the ice composition of material directly related to planet formation.
We perform a comparative numerical hydrodynamics study of embedded protostellar disks formed as a result of the gravitational collapse of cloud cores of distinct mass (M_cl=0.2--1.7 M_sun) and ratio of rotational to gravitational energy (beta=0.0028--0.023). An increase in M_cl and/or beta leads to the formation of protostellar disks that are more susceptible to gravitational instability. Disk fragmentation occurs in most models but its effect is often limited to the very early stage, with the fragments being either dispersed or driven onto the forming star during tens of orbital periods. Only cloud cores with high enough M_cl or beta may eventually form wide-separation binary/multiple systems with low mass ratios and brown dwarf or sub-solar mass companions. It is feasible that such systems may eventually break up, giving birth to rogue brown dwarfs. Protostellar disks of {it equal} age formed from cloud cores of greater mass (but equal beta) are generally denser, hotter, larger, and more massive. On the other hand, protostellar disks formed from cloud cores of higher beta (but equal M_cl) are generally thinner and colder but larger and more massive. In all models, the difference between the irradiation temperature and midplane temperature triangle T is small, except for the innermost regions of young disks, dense fragments, and disks outer edge where triangle T is negative and may reach a factor of two or even more. Gravitationally unstable, embedded disks show radial pulsations, the amplitude of which increases along the line of increasing M_cl and beta but tends to diminish as the envelope clears. We find that single stars with a disk-to-star mass ratio of order unity can be formed only from high-beta cloud cores, but such massive disks are unstable and quickly fragment into binary/multiple systems.
99 - L. Podio , A. Garufi , C. Codella 2020
The chemical composition of planets is inherited from that of the protoplanetary disk at the time of planet formation. Increasing observational evidence suggests that planet formation occurs in less than 1 Myr. This motivates the need for spatially resolved spectral observations of Class I disks, as carried out by the ALMA chemical survey of Disk-Outflow sources in Taurus (ALMA-DOT). In the context of ALMA-DOT, we observe the edge-on disk around the Class I source IRAS 04302+2247 (the butterfly star) in the 1.3mm continuum and five molecular lines. We report the first tentative detection of methanol (CH$_3$OH) in a Class I disk and resolve, for the first time, the vertical structure of a disk with multiple molecular tracers. The bulk of the emission in the CO 2-1, CS 5-4, and o-H$_2$CO 3(1,2)-2(1,1) lines originates from the warm molecular layer, with the line intensity peaking at increasing disk heights, $z$, for increasing radial distances, $r$. Molecular emission is vertically stratified, with CO observed at larger disk heights (aperture $z/rsim0.41-0.45$) compared to both CS and H$_2$CO, which are nearly cospatial ($z/rsim0.21-0.28$). In the outer midplane, the line emission decreases due to molecular freeze-out onto dust grains (freeze-out layer) by a factor of >100 (CO) and 15 (CS). The H$_2$CO emission decreases by a factor of only about 2, which is possibly due to H$_2$CO formation on icy grains, followed by a nonthermal release into the gas phase. The inferred [CH$_3$OH]/[H$_2$CO] abundance ratio is 0.5-0.6, which is 1-2 orders of magnitude lower than for Class 0 hot corinos, and a factor ~2.5 lower than the only other value inferred for a protoplanetary disk (in TW Hya, 1.3-1.7). Additionally, it is at the lower edge but still consistent with the values in comets. This may indicate that some chemical reprocessing occurs in disks before the formation of planets and comets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا