Do you want to publish a course? Click here

Will the real Hardy-Ramanujan formula please stand up?

218   0   0.0 ( 0 )
 Added by Stephen DeSalvo
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The Hardy-Ramanujan formula for the number of integer partitions of $n$ is one of the most popular results in partition theory. While the unabridged final formula has been celebrated as reflecting the genius of its authors, it has become all too common to attribute either some simplified version of the formula which is not as ingenious, or an alternative more elegant version which was expanded on afterwards by other authors. We attempt to provide a clear and compelling justification for distinguishing between the various formulas and simplifications, with a summarizing list of key take-aways in the final section.



rate research

Read More

98 - Tiefeng Jiang , Ke Wang 2018
We derive the asymptotic formula for $p_n(N,M)$, the number of partitions of integer $n$ with part size at most $N$ and length at most $M$. We consider both $N$ and $M$ are comparable to $sqrt{n}$. This is an extension of the classical Hardy-Ramanujan formula and Szekeres formula. The proof relies on the saddle point method.
158 - Quentin Bramas 2020
We consider two mobile oblivious robots that evolve in a continuous Euclidean space. We require the two robots to solve the rendezvous problem (meeting in finite time at the same location, not known beforehand) despite the possibility that one of those robots crashes unpredictably. The rendezvous is stand up indulgent in the sense that when a crash occurs, the correct robot must still meet the crashed robot on its last position. We characterize the system assumptions that enable problem solvability, and present a series of algorithms that solve the problem for the possible cases.
Ramanujan graphs are graphs whose spectrum is bounded optimally. Such graphs have found numerous applications in combinatorics and computer science. In recent years, a high dimensional theory has emerged. In this paper these developments are surveyed. After explaining their connection to the Ramanujan conjecture we will present some old and new results with an emphasis on random walks on these discrete objects and on the Euclidean spheres. The latter lead to golden gates which are of importance in quantum computation.
A simple proof of Ramanujans formula for the Fourier transform of the square of the modulus of the Gamma function restricted to a vertical line in the right half-plane is given. The result is extended to vertical lines in the left half-plane by solving an inhomogeneous ODE. We then use it to calculate the jump across the imaginary axis.
62 - Alexander Aycock 2019
We show that an apparently overlooked result of Euler from cite{E421} is essentially equivalent to the general multiplication formula for the $Gamma$-function that was proven by Gauss in cite{Ga28}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا