No Arabic abstract
The proliferation of fast, dense, byte-addressable nonvolatile memory suggests that data might be kept in pointer-rich in-memory format across program runs and even process and system crashes. For full generality, such data requires dynamic memory allocation, and while the allocator could in principle rolled into each data structure, it is desirable to make it a separate abstraction. Toward this end, we introduce recoverability, a correctness criterion for persistent allocators, together with a nonblocking allocator, Ralloc, that satisfies this criterion. Ralloc is based on the LRMalloc of Leite and Rocha, with three key innovations. First, we persist just enough information during normal operation to permit correct reconstruction of the heap after a full-system crash. Our reconstruction mechanism performs garbage collection (GC) to identify and remedy any failure-induced memory leaks. Second, we introduce the notion of filter functions, which identify the locations of pointers within persistent blocks to mitigate the limitations of conservative GC. Third, to allow persistent regions to be mapped at an arbitrary address, we employ position-independent (offset-based) pointers for both data and metadata. Experiments show Ralloc to be performance-competitive with both Makalu, the state-of-the-art lock-based persistent allocator, and such transient allocators as LRMalloc and JEMalloc. In particular, reliance on GC and offline metadata reconstruction allows Ralloc to pay almost nothing for persistence during normal operation.
Spark is an in-memory analytics platform that targets commodity server environments today. It relies on the Hadoop Distributed File System (HDFS) to persist intermediate checkpoint states and final processing results. In Spark, immutable data are used for storing data updates in each iteration, making it inefficient for long running, iterative workloads. A non-deterministic garbage collector further worsens this problem. Sparkle is a library that optimizes memory usage in Spark. It exploits large shared memory to achieve better data shuffling and intermediate storage. Sparkle replaces the current TCP/IP-based shuffle with a shared memory approach and proposes an off-heap memory store for efficient updates. We performed a series of experiments on scale-out clusters and scale-up machines. The optimized shuffle engine leveraging shared memory provides 1.3x to 6x faster performance relative to Vanilla Spark. The off-heap memory store along with the shared-memory shuffle engine provides more than 20x performance increase on a probabilistic graph processing workload that uses a large-scale real-world hyperlink graph. While Sparkle benefits at most from running on large memory machines, it also achieves 1.6x to 5x performance improvements over scale out cluster with equivalent hardware setting.
We present RDMAbox, a set of low level RDMA optimizations that provide better performance than previous approaches. The optimizations are packaged in easy-to-use kernel and user space libraries for applications and systems in data center. We demonstrate the flexibility and effectiveness of RDMAbox by implementing a kernel remote paging system and a user space file system using RDMAbox. RDMAbox employs two optimization techniques. First, we suggest RDMA request merging and chaining to further reduce the total number of I/O operations to the RDMA NIC. The I/O merge queue at the same time functions as a traffic regulator to enforce admission control and avoid overloading the NIC. Second, we propose Adaptive Polling to achieve higher efficiency of polling Work Completion than existing busy polling while maintaining the low CPU overhead of event trigger. Our implementation of a remote paging system with RDMAbox outperforms existing representative solutions with up to 4? throughput improvement and up to 83% decrease in average tail latency in bigdata workloads, and up to 83% reduction in completion time in machine learning workloads. Our implementation of a user space file system based on RDMAbox achieves up to 5.9? higher throughput over existing representative solutions.
Co-location and memory sharing between latency-critical services, such as key-value store and web search, and best-effort batch jobs is an appealing approach to improving memory utilization in multi-tenant datacenter systems. However, we find that the very diverse goals of job co-location and the GNU/Linux system stack can lead to severe performance degradation of latency-critical services under memory pressure in a multi-tenant system. We address memory pressure for latency-critical services via fast memory allocation and proactive reclamation. We find that memory allocation latency dominates the overall query latency, especially under memory pressure. We analyze the default memory management mechanism provided by GNU/Linux system stack and identify the reasons why it is inefficient for latency-critical services in a multi-tenant system. We present Hermes, a fast memory allocation mechanism in user space that adaptively reserves memory for latency-critical services. It advises Linux OS to proactively reclaim memory of batch jobs. We implement Hermes in GNU C Library. Experimental result shows that Hermes reduces the average and the $99^{th}$ percentile memory allocation latency by up to 54.4% and 62.4% for a micro benchmark, respectively. For two real-world latency-critical services, Hermes reduces both the average and the $99^{th}$ percentile tail query latency by up to 40.3%. Compared to the default Glibc, jemalloc and TCMalloc, Hermes reduces Service Level Objective violation by up to 84.3% under memory pressure.
Plenty of research efforts have been devoted to FPGA-based acceleration, due to its low latency and high energy efficiency. However, using the original low-level hardware description languages like Verilog to program FPGAs requires generally good knowledge of hardware design details and hand-on experiences. Fortunately, the FPGA community intends to address this low programmability issues. For example, , with the intention that programming FPGAs is just as easy as programming GPUs. Even though Vitis is proven to increase programmability, we cannot directly obtain high performance without careful design regarding hardware pipeline and memory subsystem.In this paper, we focus on the memory subsystem, comprehensively and systematically benchmarking the effect of optimization methods on memory performance. Upon benchmarking, we quantitatively analyze the typical memory access patterns for a broad range of applications, including AI, HPC, and database. Further, we also provide the corresponding optimization direction for each memory access pattern so as to improve overall performance.
Coalescing RDMA and Persistent Memory (PM) delivers high end-to-end performance for networked storage systems, which requires rethinking the design of efficient hash structures. In general, existing hashing schemes separately optimize RDMA and PM, thus partially addressing the problems of RDMA Access Amplification and High-Overhead PM Consistency. In order to address these problems, we propose a continuity hashing, which is a one-stone-two-birds design to optimize both RDMA and PM. The continuity hashing leverages a fine-grained contiguous shared region, called SBuckets, to provide standby positions for the neighbouring two buckets in case of hash collisions. In the continuity hashing, remote read only needs a single RDMA read to directly fetch the home bucket and the neighbouring SBuckets, which contain all the positions of maintaining a key-value item, thus alleviating RDMA access amplification. Continuity hashing further leverages indicators that can be atomically modified to support log-free PM consistency for all the write operations. Evaluation results demonstrate that compared with state-of-the-art schemes, continuity hashing achieves high throughput (i.e., 1.45X -- 2.43X improvement), low latency (about 1.7X speedup) and the smallest number of PM writes with various workloads, while has acceptable load factors of about 70%.