Do you want to publish a course? Click here

Tiny Eats: Eating Detection on a Microcontroller

185   0   0.0 ( 0 )
 Added by Maria Nyamukuru
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

There is a growing interest in low power highly efficient wearable devices for automatic dietary monitoring (ADM) [1]. The success of deep neural networks in audio event classification problems makes them ideal for this task. Deep neural networks are, however, not only computationally intensive and energy inefficient but also require a large amount of memory. To address these challenges, we propose a shallow gated recurrent unit (GRU) architecture suitable for resource-constrained applications. This paper describes the implementation of the Tiny Eats GRU, a shallow GRU neural network, on a low power micro-controller, Arm Cortex M0+, to classify eating episodes. Tiny Eats GRU is a hybrid of the traditional GRU [2] and eGRU [3] to make it small and fast enough to fit on the Arm Cortex M0+ with comparable accuracy to the traditional GRU. The Tiny Eats GRU utilizes only 4% of the Arm Cortex M0+ memory and identifies eating or non-eating episodes with 6 ms latency and accuracy of 95.15%.



rate research

Read More

Life-threatening ventricular arrhythmias (VA) are the leading cause of sudden cardiac death (SCD), which is the most significant cause of natural death in the US. The implantable cardioverter defibrillator (ICD) is a small device implanted to patients under high risk of SCD as a preventive treatment. The ICD continuously monitors the intracardiac rhythm and delivers shock when detecting the life-threatening VA. Traditional methods detect VA by setting criteria on the detected rhythm. However, those methods suffer from a high inappropriate shock rate and require a regular follow-up to optimize criteria parameters for each ICD recipient. To ameliorate the challenges, we propose the personalized computing framework for deep learning based VA detection on medical IoT systems. The system consists of intracardiac and surface rhythm monitors, and the cloud platform for data uploading, diagnosis, and CNN model personalization. We equip the system with real-time inference on both intracardiac and surface rhythm monitors. To improve the detection accuracy, we enable the monitors to detect VA collaboratively by proposing the cooperative inference. We also introduce the CNN personalization for each patient based on the computing framework to tackle the unlabeled and limited rhythm data problem. When compared with the traditional detection algorithm, the proposed method achieves comparable accuracy on VA rhythm detection and 6.6% reduction in inappropriate shock rate, while the average inference latency is kept at 71ms.
Supervised machine learning applications in the health domain often face the problem of insufficient training datasets. The quantity of labelled data is small due to privacy concerns and the cost of data acquisition and labelling by a medical expert. Furthermore, it is quite common that collected data are unbalanced and getting enough data to personalize models for individuals is very expensive or even infeasible. This paper addresses these problems by (1) designing a recurrent Generative Adversarial Network to generate realistic synthetic data and to augment the original dataset, (2) enabling the generation of balanced datasets based on heavily unbalanced dataset, and (3) to control the data generation in such a way that the generated data resembles data from specific individuals. We apply these solutions for sleep apnea detection and study in the evaluation the performance of four well-known techniques, i.e., K-Nearest Neighbour, Random Forest, Multi-Layer Perceptron, and Support Vector Machine. All classifiers exhibit in the experiments a consistent increase in sensitivity and a kappa statistic increase by between 0.007 and 0.182.
116 - Feng Jin , Arindam Sengupta , 2020
In this paper we propose mmFall - a novel fall detection system, which comprises of (i) the emerging millimeter-wave (mmWave) radar sensor to collect the human bodys point cloud along with the body centroid, and (ii) a variational recurrent autoencoder (VRAE) to compute the anomaly level of the body motion based on the acquired point cloud. A fall is claimed to have occurred when the spike in anomaly level and the drop in centroid height occur simultaneously. The mmWave radar sensor provides several advantages, such as privacycompliance and high-sensitivity to motion, over the traditional sensing modalities. However, (i) randomness in radar point cloud data and (ii) difficulties in fall collection/labeling in the traditional supervised fall detection approaches are the two main challenges. To overcome the randomness in radar data, the proposed VRAE uses variational inference, a probabilistic approach rather than the traditional deterministic approach, to infer the posterior probability of the bodys latent motion state at each frame, followed by a recurrent neural network (RNN) to learn the temporal features of the motion over multiple frames. Moreover, to circumvent the difficulties in fall data collection/labeling, the VRAE is built upon an autoencoder architecture in a semi-supervised approach, and trained on only normal activities of daily living (ADL) such that in the inference stage the VRAE will generate a spike in the anomaly level once an abnormal motion, such as fall, occurs. During the experiment, we implemented the VRAE along with two other baselines, and tested on the dataset collected in an apartment. The receiver operating characteristic (ROC) curve indicates that our proposed model outperforms the other two baselines, and achieves 98% detection out of 50 falls at the expense of just 2 false alarms.
In this work we propose a novel self-attention mechanism model to address electricity theft detection on an imbalanced realistic dataset that presents a daily electricity consumption provided by State Grid Corporation of China. Our key contribution is the introduction of a multi-head self-attention mechanism concatenated with dilated convolutions and unified by a convolution of kernel size $1$. Moreover, we introduce a binary input channel (Binary Mask) to identify the position of the missing values, allowing the network to learn how to deal with these values. Our model achieves an AUC of $0.926$ which is an improvement in more than $17%$ with respect to previous baseline work. The code is available on GitHub at https://github.com/neuralmind-ai/electricity-theft-detection-with-self-attention.
Deep learning applied to electrocardiogram (ECG) data can be used to achieve personal authentication in biometric security applications, but it has not been widely used to diagnose cardiovascular disorders. We developed a deep learning model for the detection of arrhythmia in which time-sliced ECG data representing the distance between successive R-peaks are used as the input for a convolutional neural network (CNN). The main objective is developing the compact deep learning based detect system which minimally uses the dataset but delivers the confident accuracy rate of the Arrhythmia detection. This compact system can be implemented in wearable devices or real-time monitoring equipment because the feature extraction step is not required for complex ECG waveforms, only the R-peak data is needed. The results of both tests indicated that the Compact Arrhythmia Detection System (CADS) matched the performance of conventional systems for the detection of arrhythmia in two consecutive test runs. All features of the CADS are fully implemented and publicly available in MATLAB.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا