Do you want to publish a course? Click here

Latent Geometry for Complementarity-Driven Networks

67   0   0.0 ( 0 )
 Added by Maksim Kitsak
 Publication date 2020
  fields Physics
and research's language is English
 Authors Maksim Kitsak




Ask ChatGPT about the research

Networks of interdisciplinary teams, biological interactions as well as food webs are examples of networks that are shaped by complementarity principles: connections in these networks are preferentially established between nodes with complementary properties. We propose a geometric framework for complementarity-driven networks. In doing so we first argue that traditional geometric representations, e.g., embeddings of networks into latent metric spaces, are not applicable to complementarity-driven networks due to the contradiction between the triangle inequality in latent metric spaces and the non-transitivity of complementarity. We then propose the cross-geometric representation for these complementarity-driven networks and demonstrate that this representation (i) follows naturally from the complementarity rule, (ii) is consistent with the metric property of the latent space, (iii) reproduces structural properties of real complementarity-driven networks, if the latent space is the hyperbolic disk, and (iv) allows for prediction of missing links in complementarity-driven networks with accuracy surpassing existing similarity-based methods. The proposed framework challenges social network analysis intuition and tools that are routinely applied to complementarity-driven networks and offers new avenues towards descriptive and prescriptive analysis of systems in science of science and biomedicine.

rate research

Read More

Proximity networks are time-varying graphs representing the closeness among humans moving in a physical space. Their properties have been extensively studied in the past decade as they critically affect the behavior of spreading phenomena and the performance of routing algorithms. Yet, the mechanisms responsible for their observed characteristics remain elusive. Here, we show that many of the observed properties of proximity networks emerge naturally and simultaneously in a simple latent space network model, called dynamic-$mathbb{S}^{1}$. The dynamic-$mathbb{S}^{1}$ does not model node mobility directly, but captures the connectivity in each snapshot---each snapshot in the model is a realization of the $mathbb{S}^{1}$ model of traditional complex networks, which is isomorphic to hyperbolic geometric graphs. By forgoing the motion component the model facilitates mathematical analysis, allowing us to prove the contact, inter-contact and weight distributions. We show that these distributions are power laws in the thermodynamic limit with exponents lying within the ranges observed in real systems. Interestingly, we find that network temperature plays a central role in network dynamics, dictating the exponents of these distributions, the time-aggregated agent degrees, and the formation of unique and recurrent components. Further, we show that paradigmatic epidemic and rumor spreading processes perform similarly in real and modeled networks. The dynamic-$mathbb{S}^{1}$ or extensions of it may apply to other types of time-varying networks and constitute the basis of maximum likelihood estimation methods that infer the node coordinates and their evolution in the latent spaces of real systems.
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterised by these two features. We study how these properties affect random walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first passage time of the process and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems such heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.
We study the effect of heterogeneous temporal activations on epidemic spreading in temporal networks. We focus on the susceptible-infected-susceptible (SIS) model on activity-driven networks with burstiness. By using an activity-based mean-field approach, we derive a closed analytical form for the epidemic threshold for arbitrary activity and inter-event time distributions. We show that, as expected, burstiness lowers the epidemic threshold while its effect on prevalence is twofold. In low-infective systems burstiness raises the average infection probability, while it weakens epidemic spreading for high infectivity. Our results can help clarify the conflicting effects of burstiness reported in the literature. We also discuss the scaling properties at the transition, showing that they are not affected by burstiness.
We consider an epidemic process on adaptive activity-driven temporal networks, with adaptive behaviour modelled as a change in activity and attractiveness due to infection. By using a mean-field approach, we derive an analytical estimate of the epidemic threshold for SIS and SIR epidemic models for a general adaptive strategy, which strongly depends on the correlations between activity and attractiveness in the susceptible and infected states. We focus on strong social distancing, implementing two types of quarantine inspired by recent real case studies: an active quarantine, in which the population compensates the loss of links rewiring the ineffective connections towards non-quarantining nodes, and an inactive quarantine, in which the links with quarantined nodes are not rewired. Both strategies feature the same epidemic threshold but they strongly differ in the dynamics of active phase. We show that the active quarantine is extremely less effective in reducing the impact of the epidemic in the active phase compared to the inactive one, and that in SIR model a late adoption of measures requires inactive quarantine to reach containment.
Despite the abundance of bipartite networked systems, their organizing principles are less studied, compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks, and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model, and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا