Do you want to publish a course? Click here

Diffusion quantum Monte Carlo and GW study of the electronic properties of monolayer and bulk hexagonal boron nitride

81   0   0.0 ( 0 )
 Added by Neil Drummond
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report diffusion quantum Monte Carlo (DMC) and many-body $GW$ calculations of the electronic band gaps of monolayer and bulk hexagonal boron nitride (hBN). We find the monolayer band gap to be indirect. $GW$ predicts much smaller quasiparticle gaps at both the single-shot $G_0W_0$ and the partially self-consistent $GW_0$ levels. In contrast, solving the Bethe-Salpeter equation on top of the $GW_0$ calculation yields an exciton binding energy for the direct exciton at the $K$ point in close agreement with the DMC value. Vibrational renormalization of the electronic band gap is found to be significant in both the monolayer and the bulk. Taking vibrational effects into account, DMC overestimates the band gap of bulk hBN, while $GW$ theory underestimates it.



rate research

Read More

The stacking orders in layered hexagonal boron nitride bulk and bilayers are studied using high-level ab initio theory (local second-order Moller-Plesset perturbation theory, LMP2). Our results show that both electrostatic and London dispersion interactions are responsible for interlayer distance and stacking order, with AA being the most stable one. The minimum energy sliding path includes only the AA high-symmetry stacking, and the energy barrier is 3.4 meV per atom for the bilayer. State-of-the-art Density-functionals with and without London dispersion correction fail to correctly describe the interlayer energies with the exception of PBEsol that agrees very well with our LMP2 results and experiment.
Magnetism in lanthanum cobaltite (LCO, LaCoO$_3$) appears to be strongly dependent on strain, defects, and nanostructuring. LCO on strontium titanate (STO, SrTiO$_3$) is a ferromagnet with an interesting strain relaxation mechanism that yields a lattice modulation. However, the driving force of the ferromagnetism is still controversial. Experiments debate between a vacancy-driven or strain-driven mechanism for the ferromagnetism of epitaxial LCO. We found that a weak lateral modulation of the superstructure is sufficient to promote ferromagnetism. We find that ferromagnetism appears under uniaxial compression and expansion. Although earlier experiments suggest that bulk LCO is nonmagnetic, we find an antiferromagnetic ground state for bulk LCO. We discuss the recent experiments which indicate a more complicated picture for bulk magnetism and a closer agreement with our calculations. Role of defects are also discussed through excited state calculations.
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiments on hexagonal Boron Nitride show a clear signature of a phase transition from hexagonal to wurtzite at ~ 13 GPa which is reversible on decompression. These results are contrasted with the pressure behavior of carbon nanotubes and graphite.
Recent experiments revealed that monolayer $alpha$-RuCl$_3$ can be obtain by chemical exfoliation method and exfoliation or restacking of nanosheets can manipulate the magnetic properties of the materials. In this present paper, the electronic and magnetic properties of $alpha$-RuCl$_3$ monolayer are investigated by combining first-principles calculations and Monte Carlo simulations. From first-principles calculations, we found that the spin configuration FM corresponds to the ground state for $alpha$-RuCl$_3$, however, the other excited zigzag oriented spin configuration has energy of 5 meV/atom higher than the ground state. Energy band gap has been obtained as $3$ meV using PBE functionals. When spin-orbit coupling effect is taken into account, corresponding energy gap is determined to be as $57$ meV. We also investigate the effect of Hubbard U energy terms on the electronic band structure of $alpha$-RuCl$_3$ monolayer and revealed band gap increases approximately linear with increasing U value. Moreover, spin-spin coupling terms ($J_1$, $J_2$, $J_3$) have been obtained using first principles calculations. By benefiting from these terms, Monte Carlo simulations with single site update Metropolis algorithm have been implemented to elucidate magnetic properties of the considered system. Thermal variations of magnetization, susceptibility and also specific heat curves indicate that monolayer $alpha$-RuCl$_3$ exhibits a phase transition between ordered and disordered phases at the Curie temperature $14.21$ K. We believe that this study can be utilized to improve two-dimensional magnet materials.
We present a general picture of the exciton properties of layered materials in terms of the excitations of their single-layer building blocks. To this end, we derive a model excitonic hamiltonian by drawing an analogy with molecular crystals, which are other prototypical van der Waals materials. We employ this simplified model to analyse in detail the excitation spectrum of hexagonal boron nitride (hBN) that we have obtained from the {it ab initio} solution of the many-body Bethe-Salpeter equation as a function of momentum. In this way we identify the character of the lowest-energy excitons in hBN, discuss the effects of the interlayer hopping and the electron-hole exchange interaction on the exciton dispersion, and illustrate the relation between exciton and plasmon excitations in layered materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا