This is a follow-up paper of arXiv:1805.00115, where rational curves in surfaces that satisfy general positioned point and cross-ratio conditions were enumerated. A suitable correspondence theorem provided in arXiv:1509.07453 allowed us to use tropical geometry, and, in particular, a degeneration technique called floor diagrams. This correspondence theorem also holds in higher dimension. In the current paper, we introduce so-called cross-ratio floor diagrams and show that they allow us to determine the number of rational space curves that satisfy general positioned point and cross-ratio conditions. Moreover, graphical contributions are introduced which provide a novel and structured way of understanding multiplicities of floor decomposed curves in $mathbb{R}^3$. Additionally, so-called condition flows on a tropical curve are used to reflect how conditions imposed on a tropical curve yield different types of edges. This concept is applicable in arbitrary dimension.