Hypersensitive tunable Josephson escape sensor for gigahertz astronomy


Abstract in English

Sensitive photon detection in the gigahertz band constitutes the cornerstone to study different phenomena in astronomy, such as radio burst sources, galaxy formation, cosmic microwave background, axions, comets, gigahertz-peaked spectrum radio sources and supermassive black holes. Nowadays, state of the art detectors for astrophysics are mainly based on transition edge sensors and kinetic inductance detectors. Overall, most sensible nanobolometers so far are superconducting detectors showing a noise equivalent power (NEP) as low as 2x10-20 W/Hz1/2. Yet, fast thermometry at the nanoscale was demonstrated as well with Josephson junctions through switching current measurements. In general, detection performance are set by the fabrication process and limited by used materials. Here, we conceive and demonstrate an innovative tunable Josephson escape sensor (JES) based on the precise current control of the temperature dependence of a fully superconducting one-dimensional nanowire Josephson junction. The JES might be at the core of future hypersensitive in situ-tunable bolometers or single-photon detectors working in the gigahertz regime. Operated as a bolometer the JES points to a thermal fluctuation noise (TFN) NEP_TFN 1x10-25 W/Hz1/2, which as a calorimeter bounds the frequency resolution above 2 GHz, and resolving power below 40 at 50 GHz, as deduced from the experimental data. Beyond the obvious applications in advanced ground-based and space telescopes for gigahertz astronomy, the JES might represent a breakthrough in several fields of quantum technologies ranging from subTHz communications and quantum computing to cryptography and quantum key distribution.

Download