Do you want to publish a course? Click here

Efficient spin torques in antiferromagnetic CoO/Pt quantified by comparing field- and current- induced switching

171   0   0.0 ( 0 )
 Added by Lorenzo Baldrati
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We achieve current-induced switching in collinear insulating antiferromagnetic CoO/Pt, with fourfold in-plane magnetic anisotropy. This is measured electrically by spin Hall magnetoresistance and confirmed by the magnetic field-induced spin-flop transition of the CoO layer. By applying current pulses and magnetic fields, we quantify the efficiency of the acting current-induced torques and estimate a current-field equivalence ratio of $4x10^{-11} T A^{-1} m^2$. The Neel vector final state ($n perp j$) is in line with a thermomagnetoelastic switching mechanism for a negative magnetoelastic constant of the CoO.



rate research

Read More

NiO is a prototypical antiferromagnet with a characteristic resonance frequency in the THz range. From atomistic spin dynamics simulations that take into account the crystallographic structure of NiO, and in particular a magnetic anisotropy respecting its symmetry, we describe antiferromagnetic switching at THz frequency by a spin transfer torque mechanism. Sub-picosecond S-state switching between the six allowed stable spin directions is found for reasonably achievable spin currents, like those generated by laser induced ultrafast demagnetization. A simple procedure for picosecond writing of a six-state memory is described, thus opening the possibility to speed up current logic of electronic devices by several orders of magnitude.
Deterministic magnetization switching using spin-orbit torque (SOT) has recently emerged as an efficient means to electrically control the magnetic state of ultrathin magnets. The SOT switching still lacks in oscillatory switching characteristics over time, therefore, it is limited to bipolar operation where a change in polarity of the applied current or field is required for bistable switching. The coherent rotation based oscillatory switching schemes cannot be applied to SOT because the SOT switching occurs through expansion of magnetic domains. Here, we experimentally achieve oscillatory switching in incoherent SOT process by controlling domain wall dynamics. We find that a large field-like component can dynamically influence the domain wall chirality which determines the direction of SOT switching. Consequently, under nanosecond current pulses, the magnetization switches alternatively between the two stable states. By utilizing this oscillatory switching behavior we demonstrate a unipolar deterministic SOT switching scheme by controlling the current pulse duration.
One of the most important challenges in antiferromagnetic spintronics is the read-out of the Neel vector state. High current densities up to 10$^8$ Acm$^{-2}$ used in the electrical switching experiments cause notorious difficulty in distinguishing between magnetic and thermal origins of the electrical signals. To overcome this problem, we present a temperature dependence study of the transverse resistance changes in the switching experiment with CoO|Pt devices. We demonstrate the possibility to extract a pattern of spin Hall magnetoresistance for current pulses density of $5 times 10^7$ Acm$^{-2}$ that is present only below the Neel temperature and does not follow a trend expected for thermal effects. This is the compelling evidence for the magnetic origin of the signal, which is observed using purely electrical techniques. We confirm these findings by complementary experiments in an external magnetic field. Such an approach can allow determining the optimal conditions for switching antiferromagnets and be very valuable when no imaging techniques can be applied to verify the origin of the electrical signal.
We report the experimental observation of spin-orbit torque induced switching of perpendicularly magnetized Pt/Co elements in a time resolved stroboscopic experiment based on high resolution Kerr microscopy. Magnetization dynamics is induced by injecting sub-nanosecond current pulses into the bilayer while simultaneously applying static in-plane magnetic bias fields. Highly reproducible homogeneous switching on time scales of several tens of nanoseconds is observed. Our findings can be corroborated using micromagnetic modelling only when including a field-like torque term as well as the Dzyaloshinskii-Moriya interaction mediated by finite temperature.
While current-induced spin-orbit torques (SOTs) have been extensively studied in ferromagnets and antiferromagnets, ferrimagnets have been less studied. Here we report the presence of enhanced spin-orbit torques resulting from negative exchange interaction in ferrimagnets. The effective field and switching efficiency increase substantially as CoGd approaches its compensation point, giving rise to 9 times larger spin-orbit torques compared to that of non-compensated one. The macrospin modelling results also support efficient spin-orbit torques in a ferrimagnet. Our results suggest that ferrimagnets near compensation can be a new route for spin-orbit torque applications due to their high thermal stability and easy current-induced switching assisted by negative exchange interaction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا