Conventional power-domain non-orthogonal multiple access (NOMA) relies on precise power control, which requires real-time channel state information at transmitters. This requirement severely limits its application to future wireless communication systems. To address this problem, we consider NOMA without power allocation, where we exploit the random channel fading and opportunistically perform successive interference cancellation (SIC) detection. To mitigate the multi-user interference, we propose a random NOMA where users randomly transmit their data packets with a certain probability. Then a cross-slot SIC packet recovery scheme is proposed to recover transmitted data packets. We model the cross-slot SIC packet recovery as a Markov process, and provide a throughput analysis, based on which the sum rate is maximized by jointly optimizing the transmission probability and the encoding rate of users.