Floquet and Anomalous Floquet Weyl Semimetals


Abstract in English

The periodic driving of a quantum system can enable new topological phases without analogs in static systems. This provides a route towards preparing non-equilibrium quantum phases rooted into the non-equilibrium nature by periodic driving engineering. Motivated by the ongoing considerable interest in topological semimetals, we are interested in the novel topological phases in the periodically driven topological semimetals without a static counterpart. We propose to design non-equilibrium topological semimetals in the regime of weakly driving field where the spectrum width of shares the same magnitude with the driving frequency. We identify two novel types of non-equilibrium Weyl semimetals (i.e., Floquet and anomalous Floquet Weyl semimetals) that do not exhibit analogues in equilibrium. The proposed setup is shown to be experimentally feasible using the state-of-the-art techniques used to control ultracold atoms in optical lattices.

Download