Kissing number in non-Euclidean spaces of constant sectional curvature


Abstract in English

This paper provides upper and lower bounds on the kissing number of congruent radius $r > 0$ spheres in hyperbolic $mathbb{H}^n$ and spherical $mathbb{S}^n$ spaces, for $ngeq 2$. For that purpose, the kissing number is replaced by the kissing function $kappa_H(n, r)$, resp. $kappa_S(n, r)$, which depends on the dimension $n$ and the radius $r$. After we obtain some theoretical upper and lower bounds for $kappa_H(n, r)$, we study their asymptotic behaviour and show, in particular, that $kappa_H(n,r) sim (n-1) cdot d_{n-1} cdot B(frac{n-1}{2}, frac{1}{2}) cdot e^{(n-1) r}$, where $d_n$ is the sphere packing density in $mathbb{R}^n$, and $B$ is the beta-function. Then we produce numeric upper bounds by solving a suitable semidefinite program, as well as lower bounds coming from concrete spherical codes. A similar approach allows us to locate the values of $kappa_S(n, r)$, for $n= 3,, 4$, over subintervals in $[0, pi]$ with relatively high accuracy.

Download