Rossby modes in slowly rotating stars: depth dependence in distorted polytropes with uniform rotation


Abstract in English

Large-scale Rossby waves have recently been discovered from measurements of horizontal surface and near-surface solar flows (Loptien at al. 2018). We are interested in understanding why only the sectoral modes are seen in the observations and also in modelling the radial structure of the observed modes. To do so, we characterise here the radial eigenfunctions of r modes for slowly-rotating polytropes in uniform rotation. We find that for free-surface boundary conditions on a spheroid of non-vanishing surface density, r modes can only exist for $ell=m$ spherical harmonics in the inviscid case, and we compute their depth dependence and frequencies to leading order. For quasi-adiabatic stratification the sectoral modes with no radial nodes are the only modes which are almost toroidal and the depth dependence of the corresponding horizontal motion scales as $r^m$. For all r modes except the zero radial order sectoral ones, non-adiabatic stratification plays a crucial role in the radial force balance. The lack of quasi-toroidal solutions when stratification is close to neutral, except for the sectoral modes without nodes in radius, follows from the statement that the system needs to be in both horizontal and radial force balance. In the absence of super- or subadiabatic stratification and viscosity, both the horizontal and radial force balances independently determine the pressure perturbation. The only quasi-toroidal cases in which the two determinations of the pressure perturbation are consistent are the special cases where $ell=m$, and the horizontal displacement scales with $r^m$.

Download