No Arabic abstract
Hadronic vacuum polarization (HVP) is not only a critical part of the Standard Model (SM) prediction for the anomalous magnetic moment of the muon $(g-2)_mu$, but also a crucial ingredient for global fits to electroweak (EW) precision observables due to its contribution to the running of the fine-structure constant encoded in $Deltaalpha^{(5)}_text{had}$. We find that with modern EW precision data, including the measurement of the Higgs mass, the global fit alone provides a competitive, independent determination of $Delta alpha^{(5)}_text{had}big|_text{EW}=270.2(3.0)times 10^{-4}$. This value actually lies below the range derived from $e^+e^-totext{hadrons}$ cross-section data, and thus goes into the opposite direction as would be required if a change in HVP were to bring the SM prediction for $(g-2)_mu$ into agreement with the Brookhaven measurement. Depending on the energy where the bulk of the changes in the cross section occurs, reconciling experiment and SM prediction for $(g-2)_mu$ by adjusting HVP would thus not necessarily weaken the case for physics beyond the SM (BSM), but to some extent shift it from $(g-2)_mu$ to the EW fit. We briefly explore some options of BSM scenarios that could conceivably explain the ensuing tension.
We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for finite-size effects by combining the Gounaris-Sakurai parameterisation of the timelike pion form factor with the Luscher formalism. The impact of quark-disconnected diagrams and the precision of the scale determination is discussed and included in our final result in two-flavour QCD, which carries an overall uncertainty of 6%. We present preliminary results computed on ensembles with $N_f=2+1$ dynamical flavours and discuss how the long-distance contribution can be accurately constrained by a dedicated spectrum calculation in the iso-vector channel.
We address the contribution of the $3pi$ channel to hadronic vacuum polarization (HVP) using a dispersive representation of the $e^+e^-to 3pi$ amplitude. This channel gives the second-largest individual contribution to the total HVP integral in the anomalous magnetic moment of the muon $(g-2)_mu$, both to its absolute value and uncertainty. It is largely dominated by the narrow resonances $omega$ and $phi$, but not to the extent that the off-peak regions were negligible, so that at the level of accuracy relevant for $(g-2)_mu$ an analysis of the available data as model independent as possible becomes critical. Here, we provide such an analysis based on a global fit function using analyticity and unitarity of the underlying $gamma^*to3pi$ amplitude and its normalization from a chiral low-energy theorem, which, in particular, allows us to check the internal consistency of the various $e^+e^-to 3pi$ data sets. Overall, we obtain $a_mu^{3pi}|_{leq 1.8,text{GeV}}=46.2(6)(6)times 10^{-10}$ as our best estimate for the total $3pi$ contribution consistent with all (low-energy) constraints from QCD. In combination with a recent dispersive analysis imposing the same constraints on the $2pi$ channel below $1,text{GeV}$, this covers nearly $80%$ of the total HVP contribution, leading to $a_mu^text{HVP}=692.3(3.3)times 10^{-10}$ when the remainder is taken from the literature, and thus reaffirming the $(g-2)_mu$ anomaly at the level of at least $3.4sigma$. As side products, we find for the vacuum-polarization-subtracted masses $M_omega=782.63(3)(1),text{MeV}$ and $M_phi=1019.20(2)(1),text{MeV}$, confirming the tension to the $omega$ mass as extracted from the $2pi$ channel.
We present a detailed analysis of $e^+e^-topi^+pi^-$ data up to $sqrt{s}=1,text{GeV}$ in the framework of dispersion relations. Starting from a family of $pipi$ $P$-wave phase shifts, as derived from a previous Roy-equation analysis of $pipi$ scattering, we write down an extended Omn`es representation of the pion vector form factor in terms of a few free parameters and study to which extent the modern high-statistics data sets can be described by the resulting fit function that follows from general principles of QCD. We find that statistically acceptable fits do become possible as soon as potential uncertainties in the energy calibration are taken into account, providing a strong cross check on the internal consistency of the data sets, but preferring a mass of the $omega$ meson significantly lower than the current PDG average. In addition to a complete treatment of statistical and systematic errors propagated from the data, we perform a comprehensive analysis of the systematic errors in the dispersive representation and derive the consequences for the two-pion contribution to hadronic vacuum polarization. In a global fit to both time- and space-like data sets we find $a_mu^{pipi}|_{leq 1,text{GeV}}=495.0(1.5)(2.1)times 10^{-10}$ and $a_mu^{pipi}|_{leq 0.63,text{GeV}}=132.8(0.4)(1.0)times 10^{-10}$. While the constraints are thus most stringent for low energies, we obtain uncertainty estimates throughout the whole energy range that should prove valuable in corroborating the corresponding contribution to the anomalous magnetic moment of the muon. As side products, we obtain improved constraints on the $pipi$ $P$-wave, valuable input for future global analyses of low-energy $pipi$ scattering, as well as a determination of the pion charge radius, $langle r_pi^2 rangle = 0.429(1)(4),text{fm}^2$.
The Fermi constant ($G_F$) is extremely well measured through the muon lifetime, defining one of the key fundamental parameters in the Standard Model (SM). Therefore, to search for physics beyond the SM (BSM) via $G_F$, the constraining power is determined by the precision of the second-best independent determination of $G_F$. The best alternative extractions of $G_F$ proceed either via the global electroweak (EW) fit or from superallowed $beta$ decays in combination with the Cabibbo angle measured in kaon, $tau$, or $D$ decays. Both variants display some tension with $G_F$ from muon decay, albeit in opposite directions, reflecting the known tensions within the EW fit and hints for the apparent violation of CKM unitarity, respectively. We investigate how BSM physics could bring the three determinations of $G_F$ into agreement using SM effective field theory and comment on future perspectives.
While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon $(g-2)_mu$ also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from $pi^0$, $eta$, $eta$. Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the $pi^0$ the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by $Delta a_mu^text{LSDC}=13(6)times 10^{-11}$. This number does not include the contribution from the charm quark, for which we find $a_mu^{ctext{-quark}}=3(1)times 10^{-11}$.