Do you want to publish a course? Click here

Dynamics of a two-dimensional quantum spin-orbital liquid: spectroscopic signatures of fermionic magnons

115   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide an exact study of dynamical correlations for the quantum spin-orbital liquid phases of an SU(2)-symmetric Kitaev honeycomb lattice model. We show that the spin dynamics in this Kugel-Khomskii type model is exactly the density-density correlation function of S=1 fermionic magnons, which could be probed in resonant inelastic x-ray scattering experiments. We predict the characteristic signatures of spin-orbital fractionalization in inelastic scattering experiments and compare them to the ones of the spin-anisotropic Kitaev honeycomb spin liquid. In particular, the resonant inelastic x-ray scattering response shows a characteristic momentum dependence directly related to the dispersion of fermionic excitations. The neutron scattering cross section displays a mixed response of fermionic magnons as well as spin-orbital excitations. The latter has a bandwidth of broad excitations and a vison gap that is three times larger than that of the spin-1/2 Kitaev model.



rate research

Read More

A quantum spin liquid (QSL) is a state of matter where unpaired electrons spins in a solid are quantum entangled, but do not show magnetic order in the zero-temperature limit. Because such a state may be important to the microscopic origin of high-transition temperature superconductivity and useful for quantum computation, the experimental realization of QSL is a long-sought goal in condensed matter physics. Although neutron scattering experiments on the two-dimensional (2D) spin-1/2 kagome-lattice ZnCu3(OD)6Cl2 and effective spin-1/2 triangular lattice YbMgGaO4 have found evidence for a continuum of magnetic excitations, the hallmark of a QSL carrying fractionalized quantum excitations, at very low temperature, magnetic and nonmagnetic site chemical disorder complicates the interpretation of the data. Recently, the three-dimensional (3D) Ce3+ pyrochlore lattice Ce2Sn2O7 has been suggested as a clean, effective spin-1/2 QSL candidate, but there is no evidence of a spin excitation continuum. Here we use thermodynamic, muon spin relaxation ({mu} SR), and neutron scattering experiments on single crystals of Ce2Zr2O7, a compound isostructural to Ce2Sn2O7, to demonstrate the absence of magnetic ordering and the presence of a spin excitation continuum at 35 mK, consistent with the expectation of a QSL. Since our neutron diffraction and diffuse scattering measurements on Ce2Zr2O7 reveal no evidence of oxygen deficiency and magnetic/nonmagnetic ion disorder as seen in other pyrochlores, Ce2Zr2O7 may be the first example of a 3D QSL material with minimum magnetic and nonmagnetic chemical disorder.
124 - Jae-Ho Han , Yong-Heum Cho , 2016
Resorting to a recently developed theoretical device called dimensional regularization for quantum criticality with a Fermi surface, we examine a metal-insulator quantum phase transition from a Landaus Fermi-liquid state to a U(1) spin-liquid phase with a spinon Fermi surface in two dimensions. Unfortunately, we fail to approach the spin-liquid Mott quantum critical point from the U(1) spin-liquid state within the dimensional regularization technique. Self-interactions between charge fluctuations called holons are not screened, which shows a run-away renormalization group flow, interpreted as holons remain gapped. This leads us to consider another fixed point, where the spinon Fermi surface can be destabilized across the Mott transition. Based on this conjecture, we reveal the nature of the spin-liquid Mott quantum critical point: Dimensional reduction to one dimension occurs for spin dynamics described by spinons. As a result, Landau damping for both spin and charge dynamics disappear in the vicinity of the Mott quantum critical point. When the flavor number of holons is over its critical value, an interacting fixed point appears to be identified with an inverted XY universality class, controlled within the dimensional regularization technique. On the other hand, a fluctuation-driven first order metal-insulator transition results when it is below the critical number. We propose that the destabilization of a spinon Fermi surface and the emergence of one-dimensional spin dynamics near the spin-liquid Mott quantum critical point can be checked out by spin susceptibility with a $2 k_{F}$ transfer momentum, where $k_{F}$ is a Fermi momentum in the U(1) spin-liquid state: The absence of Landau damping in U(1) gauge fluctuations gives rise to a divergent behavior at zero temperature while it vanishes in the presence of a spinon Fermi surface.
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the $d$-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital, and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO$_3$-based 2DEGs, and yield new microscopic insights on their functional properties.
We study a spin-orbital model for 4$d^{1}$ or 5$d^{1}$ Mott insulators in ordered double perovskites with strong spin-orbit coupling. This model is conveniently written in terms of pseudospin and pseudo-orbital operators representing multipoles of the effective $j=3/2$ angular momentum. Similarities between this model and the effective theories of Kitaev materials motivate the proposal of a chiral spin-orbital liquid with Majorana fermion excitations. The thermodynamic and spectroscopic properties of this quantum spin liquid are characterized using parton mean-field theory. The heat capacity, spin-lattice relaxation rate, and dynamic structure factor for inelastic neutron scattering are calculated and compared with the experimental data for the spin liquid candidate Ba$_{2}$YMoO$_{6}$. Moreover, based on a symmetry analysis, we discuss the operators involved in resonant inelastic X-ray scattering (RIXS) amplitudes for double perovskite compounds. In general, the RIXS cross sections allow one to selectively probe pseudospin and pseudo-orbital degrees of freedom. For the chiral spin-orbital liquid in particular, these cross sections provide information about the spectrum for different flavors of Majorana fermions.
At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. While such states are possibly realized in two-dimensional organic compounds, they have remained elusive in experimentally relevant microscopic two-dimensional models. Here, we show by means of large-scale quantum Monte Carlo simulations of correlated fermions on the honeycomb lattice, a structure realized in graphene, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Therefore, the possibility of unconventional superconductivity through doping arises. We foresee its realization with ultra-cold atoms or with honeycomb lattices made with group IV elements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا