A serendipitous discovery of GeV gamma-ray emission from supernova 2004dj in a survey of nearby star-forming galaxies with Fermi-LAT


Abstract in English

The interaction between a supernova ejecta and the circum-stellar medium drives a strong shock wave which accelerates particles (i.e., electrons and protons). The radio and X-ray emission observed after the supernova explosion constitutes the evidence of the electron acceleration. The accelerated protons are expected to produce GeV-TeV gamma-ray emission via $pp$ collisions, but the flux is usually low since only a small fraction of the supernova kinetic energy is converted into the shock energy at the very early time. The low gamma-ray flux of the nearest supernova explosion, SN 1987A, agrees with this picture. Here we report a serendipitous discovery of a fading GeV gamma-ray source in spatial coincidence with the second nearest supernova--SN 2004dj from our gamma-ray survey of nearby star-forming galaxies with Fermi-LAT. The total gamma-ray energy released by SN 2004dj is about $6times10^{47}{rm erg}$. We interpret this gamma-ray emission arising from the supernova ejecta interacting with a surrounding high-density shell, which decelerates the ejecta and converts ~1% of the ejectas kinetic energy to relativistic protons. In addition, our gamma-ray survey of nearby star-forming galaxies discovers GeV emissions from two star-forming galaxies, i.e., Arp 299 and M33, for the first time.

Download