Do you want to publish a course? Click here

Spitzoid Lesions Diagnosis based on GA feature selection and Random Forest

80   0   0.0 ( 0 )
 Added by Abir Belaala
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Spitzoid lesions broadly categorized into Spitz Nevus (SN), Atypical Spitz Tumors (AST), and Spitz Melanomas (SM). The accurate diagnosis of these lesions is one of the most challenges for dermapathologists; this is due to the high similarities between them. Data mining techniques are successfully applied to situations like these where complexity exists. This study aims to develop an artificial intelligence model to support the diagnosis of Spitzoid lesions. A private spitzoid lesions dataset have been used to evaluate the system proposed in this study. The proposed system has three stages. In the first stage, SMOTE method applied to solve the imbalance data problem, in the second stage, in order to eliminate irrelevant features; genetic algorithm is used to select significant features. This later reduces the computational complexity and speed up the data mining process. In the third stage, Random forest classifier is employed to make a decision for two different categories of lesions (Spitz nevus or Atypical Spitz Tumors). The performance of our proposed scheme is evaluated using accuracy, sensitivity, specificity, G-mean, F- measure, ROC and AUC. Results obtained with our SMOTE-GA-RF model with GA-based 16 features show a great performance with accuracy 0.97, F-measure 0.98, AUC 0.98, and G-mean 0.97.Results obtained in this study have potential to open new opportunities in diagnosis of spitzoid lesions.



rate research

Read More

235 - Liang Sun , Zhanhao Mo , Fuhua Yan 2020
Chest computed tomography (CT) becomes an effective tool to assist the diagnosis of coronavirus disease-19 (COVID-19). Due to the outbreak of COVID-19 worldwide, using the computed-aided diagnosis technique for COVID-19 classification based on CT images could largely alleviate the burden of clinicians. In this paper, we propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images. Specifically, we first extract location-specific features from CT images. Then, in order to capture the high-level representation of these features with the relatively small-scale data, we leverage a deep forest model to learn high-level representation of the features. Moreover, we propose a feature selection method based on the trained deep forest model to reduce the redundancy of features, where the feature selection could be adaptively incorporated with the COVID-19 classification model. We evaluated our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP). The accuracy (ACC), sensitivity (SEN), specificity (SPE) and AUC achieved by our method are 91.79%, 93.05%, 89.95% and 96.35%, respectively. Experimental results on the COVID-19 dataset suggest that the proposed AFS-DF achieves superior performance in COVID-19 vs. CAP classification, compared with 4 widely used machine learning methods.
Mammography remains the most prevalent imaging tool for early breast cancer screening. The language used to describe abnormalities in mammographic reports is based on the breast Imaging Reporting and Data System (BI-RADS). Assigning a correct BI-RADS category to each examined mammogram is a strenuous and challenging task for even experts. This paper proposes a new and effective computer-aided diagnosis (CAD) system to classify mammographic masses into four assessment categories in BI-RADS. The mass regions are first enhanced by means of histogram equalization and then semiautomatically segmented based on the region growing technique. A total of 130 handcrafted BI-RADS features are then extrcated from the shape, margin, and density of each mass, together with the mass size and the patients age, as mentioned in BI-RADS mammography. Then, a modified feature selection method based on the genetic algorithm (GA) is proposed to select the most clinically significant BI-RADS features. Finally, a back-propagation neural network (BPN) is employed for classification, and its accuracy is used as the fitness in GA. A set of 500 mammogram images from the digital database of screening mammography (DDSM) is used for evaluation. Our system achieves classification accuracy, positive predictive value, negative predictive value, and Matthews correlation coefficient of 84.5%, 84.4%, 94.8%, and 79.3%, respectively. To our best knowledge, this is the best current result for BI-RADS classification of breast masses in mammography, which makes the proposed system promising to support radiologists for deciding proper patient management based on the automatically assigned BI-RADS categories.
400 - Delong Chen , Shunhui Ji , Fan Liu 2020
The pandemic of COVID-19 has caused millions of infections, which has led to a great loss all over the world, socially and economically. Due to the false-negative rate and the time-consuming of the conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, diagnosing based on X-ray images and Computed Tomography (CT) images has been widely adopted. Therefore, researchers of the computer vision area have developed many automatic diagnosing models based on machine learning or deep learning to assist the radiologists and improve the diagnosing accuracy. In this paper, we present a review of these recently emerging automatic diagnosing models. 70 models proposed from February 14, 2020, to July 21, 2020, are involved. We analyzed the models from the perspective of preprocessing, feature extraction, classification, and evaluation. Based on the limitation of existing models, we pointed out that domain adaption in transfer learning and interpretability promotion would be the possible future directions.
Neurodegenerative diseases are frequently associated with structural changes in the brain. Magnetic Resonance Imaging (MRI) scans can show these variations and therefore be used as a supportive feature for a number of neurodegenerative diseases. The hippocampus has been known to be a biomarker for Alzheimer disease and other neurological and psychiatric diseases. However, it requires accurate, robust and reproducible delineation of hippocampal structures. Fully automatic methods are usually the voxel based approach, for each voxel a number of local features were calculated. In this paper we compared four different techniques for feature selection from a set of 315 features extracted for each voxel: (i) filter method based on the Kolmogorov-Smirnov test; two wrapper methods, respectively, (ii) Sequential Forward Selection and (iii) Sequential Backward Elimination; and (iv) embedded method based on the Random Forest Classifier on a set of 10 T1-weighted brain MRIs and tested on an independent set of 25 subjects. The resulting segmentations were compared with manual reference labelling. By using only 23 features for each voxel (sequential backward elimination) we obtained comparable state of-the-art performances with respect to the standard tool FreeSurfer.
Cervical cancer is one of the deadliest cancers affecting women globally. Cervical intraepithelial neoplasia (CIN) assessment using histopathological examination of cervical biopsy slides is subject to interobserver variability. Automated processing of digitized histopathology slides has the potential for more accurate classification for CIN grades from normal to increasing grades of pre-malignancy: CIN1, CIN2 and CIN3. Cervix disease is generally understood to progress from the bottom (basement membrane) to the top of the epithelium. To model this relationship of disease severity to spatial distribution of abnormalities, we propose a network pipeline, DeepCIN, to analyze high-resolution epithelium images (manually extracted from whole-slide images) hierarchically by focusing on localized vertical regions and fusing this local information for determining Normal/CIN classification. The pipeline contains two classifier networks: 1) a cross-sectional, vertical segment-level sequence generator (two-stage encoder model) is trained using weak supervision to generate feature sequences from the vertical segments to preserve the bottom-to-top feature relationships in the epithelium image data; 2) an attention-based fusion network image-level classifier predicting the final CIN grade by merging vertical segment sequences. The model produces the CIN classification results and also determines the vertical segment contributions to CIN grade prediction. Experiments show that DeepCIN achieves pathologist-level CIN classification accuracy.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا