Do you want to publish a course? Click here

Time-varying Gaussian Process Bandit Optimization with Non-constant Evaluation Time

293   0   0.0 ( 0 )
 Added by Hideaki Imamura
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The Gaussian process bandit is a problem in which we want to find a maximizer of a black-box function with the minimum number of function evaluations. If the black-box function varies with time, then time-varying Bayesian optimization is a promising framework. However, a drawback with current methods is in the assumption that the evaluation time for every observation is constant, which can be unrealistic for many practical applications, e.g., recommender systems and environmental monitoring. As a result, the performance of current methods can be degraded when this assumption is violated. To cope with this problem, we propose a novel time-varying Bayesian optimization algorithm that can effectively handle the non-constant evaluation time. Furthermore, we theoretically establish a regret bound of our algorithm. Our bound elucidates that a pattern of the evaluation time sequence can hugely affect the difficulty of the problem. We also provide experimental results to validate the practical effectiveness of the proposed method.



rate research

Read More

171 - Denise Rava , Jelena Bradic 2020
Prognostic models in survival analysis are aimed at understanding the relationship between patients covariates and the distribution of survival time. Traditionally, semi-parametric models, such as the Cox model, have been assumed. These often rely on strong proportionality assumptions of the hazard that might be violated in practice. Moreover, they do not often include covariate information updated over time. We propose a new flexible method for survival prediction: DeepHazard, a neural network for time-varying risks. Our approach is tailored for a wide range of continuous hazards forms, with the only restriction of being additive in time. A flexible implementation, allowing different optimization methods, along with any norm penalty, is developed. Numerical examples illustrate that our approach outperforms existing state-of-the-art methodology in terms of predictive capability evaluated through the C-index metric. The same is revealed on the popular real datasets as METABRIC, GBSG, and ACTG.
Many applications require a learner to make sequential decisions given uncertainty regarding both the systems payoff function and safety constraints. In safety-critical systems, it is paramount that the learners actions do not violate the safety constraints at any stage of the learning process. In this paper, we study a stochastic bandit optimization problem where the unknown payoff and constraint functions are sampled from Gaussian Processes (GPs) first considered in [Srinivas et al., 2010]. We develop a safe variant of GP-UCB called SGP-UCB, with necessary modifications to respect safety constraints at every round. The algorithm has two distinct phases. The first phase seeks to estimate the set of safe actions in the decision set, while the second phase follows the GP-UCB decision rule. Our main contribution is to derive the first sub-linear regret bounds for this problem. We numerically compare SGP-UCB against existing safe Bayesian GP optimization algorithms.
65 - R. W. Kuhne 1999
Webb et al. presented preliminary evidence for a time-varying fine-structure constant. We show Tellers formula for this variation to be ruled out within the Einstein-de Sitter universe, however, it is compatible with cosmologies which require a large cosmological constant.
We propose SPARFA-Trace, a new machine learning-based framework for time-varying learning and content analytics for education applications. We develop a novel message passing-based, blind, approximate Kalman filter for sparse factor analysis (SPARFA), that jointly (i) traces learner concept knowledge over time, (ii) analyzes learner concept knowledge state transitions (induced by interacting with learning resources, such as textbook sections, lecture videos, etc, or the forgetting effect), and (iii) estimates the content organization and intrinsic difficulty of the assessment questions. These quantities are estimated solely from binary-valued (correct/incorrect) graded learner response data and a summary of the specific actions each learner performs (e.g., answering a question or studying a learning resource) at each time instance. Experimental results on two online course datasets demonstrate that SPARFA-Trace is capable of tracing each learners concept knowledge evolution over time, as well as analyzing the quality and content organization of learning resources, the question-concept associations, and the question intrinsic difficulties. Moreover, we show that SPARFA-Trace achieves comparable or better performance in predicting unobserved learner responses than existing collaborative filtering and knowledge tracing approaches for personalized education.
We propose a new framework for imposing monotonicity constraints in a Bayesian nonparametric setting based on numerical solutions of stochastic differential equations. We derive a nonparametric model of monotonic functions that allows for interpretable priors and principled quantification of hierarchical uncertainty. We demonstrate the efficacy of the proposed model by providing competitive results to other probabilistic monotonic models on a number of benchmark functions. In addition, we consider the utility of a monotonic random process as a part of a hierarchical probabilistic model; we examine the task of temporal alignment of time-series data where it is beneficial to use a monotonic random process in order to preserve the uncertainty in the temporal warpings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا