Do you want to publish a course? Click here

ASVLite: a high-performance simulator for autonomous surface vehicles

123   0   0.0 ( 0 )
 Added by Toby Thomas
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The energy of ocean waves is the key distinguishing factor of marine environments compared to other aquatic environments such as lakes and rivers. Waves significantly affect the dynamics of marine vehicles; hence it is imperative to consider the dynamics of vehicles in waves when developing efficient control strategies for autonomous surface vehicles (ASVs). However, most marine simulators available open-source either exclude dynamics of vehicles in waves or use methods with high computational overhead. This paper presents ASVLite, a computationally efficient ASV simulator that uses frequency domain analysis for wave force computation. ASVLite is suitable for applications requiring low computational overhead and high run-time performance. Our tests on a Raspberry Pi 2 and a mid-range desktop computer show that the simulator has a high run-time performance to efficiently simulate irregular waves with a component wave count of up to 260 and large-scale swarms of up to 500 ASVs.



rate research

Read More

We propose a novel receding horizon planner for an autonomous surface vehicle (ASV) performing path planning in urban waterways. Feasible paths are found by repeatedly generating and searching a graph reflecting the obstacles observed in the sensor field-of-view. We also propose a novel method for multi-objective motion planning over the graph by leveraging the paradigm of lexicographic optimization and applying it to graph search within our receding horizon planner. The competing resources of interest are penalized hierarchically during the search. Higher-ranked resources cause a robot to incur non-negative costs over the paths traveled, which are occasionally zero-valued. The framework is intended to capture problems in which a robot must manage resources such as risk of collision. This leaves freedom for tie-breaking with respect to lower-priority resources; at the bottom of the hierarchy is a strictly positive quantity consumed by the robot, such as distance traveled, energy expended or time elapsed. We conduct experiments in both simulated and real-world environments to validate the proposed planner and demonstrate its capability for enabling ASV navigation in complex environments.
In this work, we address the motion planning problem for autonomous vehicles through a new lattice planning approach, called Feedback Enhanced Lattice Planner (FELP). Existing lattice planners have two major limitations, namely the high dimensionality of the lattice and the lack of modeling of agent vehicle behaviors. We propose to apply the Intelligent Driver Model (IDM) as a speed feedback policy to address both of these limitations. IDM both enables the responsive behavior of the agents, and uniquely determines the acceleration and speed profile of the ego vehicle on a given path. Therefore, only a spatial lattice is needed, while discretization of higher order dimensions is no longer required. Additionally, we propose a directed-graph map representation to support the implementation and execution of lattice planners. The map can reflect local geometric structure, embed the traffic rules adhering to the road, and is efficient to construct and update. We show that FELP is more efficient compared to other existing lattice planners through runtime complexity analysis, and we propose two variants of FELP to further reduce the complexity to polynomial time. We demonstrate the improvement by comparing FELP with an existing spatiotemporal lattice planner using simulations of a merging scenario and continuous highway traffic. We also study the performance of FELP under different traffic densities.
172 - Bo Yang , Yiwen Lu , Xu Yang 2021
Drift control is significant to the safety of autonomous vehicles when there is a sudden loss of traction due to external conditions such as rain or snow. It is a challenging control problem due to the presence of significant sideslip and nearly full saturation of the tires. In this paper, we focus on the control of drift maneuvers following circular paths with either fixed or moving centers, subject to change in the tire-ground interaction, which are common training tasks for drift enthusiasts and can therefore be used as benchmarks of the performance of drift control. In order to achieve the above tasks, we propose a novel hierarchical control architecture which decouples the curvature and center control of the trajectory. In particular, an outer loop stabilizes the center by tuning the target curvature, and an inner loop tracks the curvature using a feedforward/feedback controller enhanced by an $mathcal{L}_1$ adaptive component. The hierarchical architecture is flexible because the inner loop is task-agnostic and adaptive to changes in tire-road interaction, which allows the outer loop to be designed independent of low-level dynamics, opening up the possibility of incorporating sophisticated planning algorithms. We implement our control strategy on a simulation platform as well as on a 1/10 scale Radio-Control~(RC) car, and both the simulation and experiment results illustrate the effectiveness of our strategy in achieving the above described set of drift maneuvering tasks.
Robust and accurate, map-based localization is crucial for autonomous mobile systems. In this paper, we exploit range images generated from 3D LiDAR scans to address the problem of localizing mobile robots or autonomous cars in a map of a large-scale outdoor environment represented by a triangular mesh. We use the Poisson surface reconstruction to generate the mesh-based map representation. Based on the range images generated from the current LiDAR scan and the synthetic rendered views from the mesh-based map, we propose a new observation model and integrate it into a Monte Carlo localization framework, which achieves better localization performance and generalizes well to different environments. We test the proposed localization approach on multiple datasets collected in different environments with different LiDAR scanners. The experimental results show that our method can reliably and accurately localize a mobile system in different environments and operate online at the LiDAR sensor frame rate to track the vehicle pose.
213 - Bo Yu , Jie Tang , Shaoshan Liu 2020
PerceptIn develops and commercializes autonomous vehicles for micromobility around the globe. This paper makes a holistic summary of PerceptIns development and operating experiences. This paper provides the business tale behind our product, and presents the development of the computing system for our vehicles. We illustrate the design decision made for the computing system, and show the advantage of offloading localization workloads onto an FPGA platform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا