Do you want to publish a course? Click here

Intertwined Order in Fractional Chern Insulators from Finite-Momentum Pairing of Composite Fermions

148   0   0.0 ( 0 )
 Added by Ramanjit Sohal
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the problem of intertwined orders in fractional Chern insulators by considering lattice fractional quantum Hall (FQH) states arising from pairing of composite fermions in the square-lattice Hofstadter model. At certain filling fractions, magnetic translation symmetry ensures the composite fermions form Fermi surfaces with multiple pockets, leading to the formation of finite-momentum Cooper pairs in the presence of attractive interactions. We obtain mean-field phase diagrams exhibiting a rich array of striped and topological phases, establishing paired lattice FQH states as an ideal platform to investigate the intertwining of topological and conventional broken symmetry order.



rate research

Read More

We formulate a Chern-Simons composite fermion theory for Fractional Chern Insulators (FCIs), whereby bare fermions are mapped into composite fermions coupled to a lattice Chern-Simons gauge theory. We apply this construction to a Chern insulator model on the kagome lattice and identify a rich structure of gapped topological phases characterized by fractionalized excitations including states with unequal filling and Hall conductance. Gapped states with the same Hall conductance at different filling fractions are characterized as realizing distinct symmetry fractionalization classes.
We report on the numerically exact simulation of the dissipative dynamics governed by quantum master equations that feature fractional quantum Hall states as unique steady states. In particular, for the paradigmatic Hofstadter model, we show how Laughlin states can be to good approximation prepared in a dissipative fashion from arbitrary initial states by simply pumping strongly interacting bosons into the lowest Chern band of the corresponding single-particle spectrum. While pure (up to topological degeneracy) steady states are only reached in the low-flux limit or for extended hopping range, we observe a certain robustness regarding the overlap of the steady state with fractional quantum Hall states for experimentally well-controlled flux densities. This may be seen as an encouraging step towards addressing the long-standing challenge of preparing strongly correlated topological phases in quantum simulators.
Topological pairing of composite fermions has led to remarkable ideas, such as excitations obeying non-Abelian braid statistics and topological quantum computation. We construct a $p$-wave paired Bardeen-Cooper-Schrieffer (BCS) wave function for composite fermions in the torus geometry, which is a convenient geometry for formulating momentum space pairing as well as for revealing the underlying composite-fermion Fermi sea. Following the standard BCS approach, we minimize the Coulomb interaction energy at half filling in the lowest and the second Landau levels, which correspond to filling factors $ u=1/2$ and $ u=5/2$ in GaAs quantum wells, by optimizing two variational parameters that are analogous to the gap and the Debye cut-off energy of the BCS theory. Our results show no evidence for pairing at $ u=1/2$ but a clear evidence for pairing at $ u=5/2$. To a good approximation, the highest overlap between the exact Coulomb ground state at $ u=5/2$ and the BCS state is obtained for parameters that minimize the energy of the latter, thereby providing support for the physics of composite-fermion pairing as the mechanism for the $5/2$ fractional quantum Hall effect. We discuss the issue of modular covariance of the composite-fermion BCS wave function, and calculate its Hall viscosity and pair correlation function. By similar methods, we look for but do not find an instability to $s$-wave pairing for a spin-singlet composite-fermion Fermi sea at half-filled lowest Landau level in a system where the Zeeman splitting has been set to zero.
99 - Junren Shi 2017
We propose a (4+1) dimensional Chern-Simons field theoretical description of the fractional quantum Hall effect. It suggests that composite fermions reside on a momentum manifold with a nonzero Chern number. Based on derivations from microscopic wave functions, we further show that the momentum manifold has a uniformly distributed Berry curvature. As a result, composite fermions do not follow the ordinary Newtonian dynamics as commonly believed, but the more general symplectic one. For a Landau level with the particle-hole symmetry, the theory correctly predicts its Hall conductance at half-filling as well as the symmetry between an electron filling fraction and its hole counterpart.
Even if a noninteracting system has zero Berry curvature everywhere in the Brillouin zone, it is possible to introduce interactions that stabilise a fractional Chern insulator. These interactions necessarily break time-reversal symmetry (either spontaneously or explicitly) and have the effect of altering the underlying band structure. We outline a number of ways in which this may be achieved, and show how similar interactions may also be used to create a (time-reversal symmetric) fractional topological insulator. While our approach is rigorous in the limit of long range interactions, we show numerically that even for short range interactions a fractional Chern insulator can be stabilised in a band with zero Berry curvature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا