No Arabic abstract
Machine learning models have had discernible achievements in a myriad of applications. However, most of these models are black-boxes, and it is obscure how the decisions are made by them. This makes the models unreliable and untrustworthy. To provide insights into the decision making processes of these models, a variety of traditional interpretable models have been proposed. Moreover, to generate more human-friendly explanations, recent work on interpretability tries to answer questions related to causality such as Why does this model makes such decisions? or Was it a specific feature that caused the decision made by the model?. In this work, models that aim to answer causal questions are referred to as causal interpretable models. The existing surveys have covered concepts and methodologies of traditional interpretability. In this work, we present a comprehensive survey on causal interpretable models from the aspects of the problems and methods. In addition, this survey provides in-depth insights into the existing evaluation metrics for measuring interpretability, which can help practitioners understand for what scenarios each evaluation metric is suitable.
Time series data is a collection of chronological observations which is generated by several domains such as medical and financial fields. Over the years, different tasks such as classification, forecasting, and clustering have been proposed to analyze this type of data. Time series data has been also used to study the effect of interventions over time. Moreover, in many fields of science, learning the causal structure of dynamic systems and time series data is considered an interesting task which plays an important role in scientific discoveries. Estimating the effect of an intervention and identifying the causal relations from the data can be performed via causal inference. Existing surveys on time series discuss traditional tasks such as classification and forecasting or explain the details of the approaches proposed to solve a specific task. In this paper, we focus on two causal inference tasks, i.e., treatment effect estimation and causal discovery for time series data, and provide a comprehensive review of the approaches in each task. Furthermore, we curate a list of commonly used evaluation metrics and datasets for each task and provide in-depth insight. These metrics and datasets can serve as benchmarks for research in the field.
Decisions by Machine Learning (ML) models have become ubiquitous. Trusting these decisions requires understanding how algorithms take them. Hence interpretability methods for ML are an active focus of research. A central problem in this context is that both the quality of interpretability methods as well as trust in ML predictions are difficult to measure. Yet evaluations, comparisons and improvements of trust and interpretability require quantifiable measures. Here we propose a quantitative measure for the quality of interpretability methods. Based on that we derive a quantitative measure of trust in ML decisions. Building on previous work we propose to measure intuitive understanding of algorithmic decisions using the information transfer rate at which humans replicate ML model predictions. We provide empirical evidence from crowdsourcing experiments that the proposed metric robustly differentiates interpretability methods. The proposed metric also demonstrates the value of interpretability for ML assisted human decision making: in our experiments providing explanations more than doubled productivity in annotation tasks. However unbiased human judgement is critical for doctors, judges, policy makers and others. Here we derive a trust metric that identifies when human decisions are overly biased towards ML predictions. Our results complement existing qualitative work on trust and interpretability by quantifiable measures that can serve as objectives for further improving methods in this field of research.
Causal machine-learning is about predicting the net-effect (true-lift) of treatments. Given the data of a treatment group and a control group, it is similar to a standard supervised-learning problem. Unfortunately, there is no similarly well-defined loss function due to the lack of point-wise true values in the data. Many advances in modern machine-learning are not directly applicable due to the absence of such loss function. We propose a novel method to define a loss function in this context, which is equal to mean-square-error (MSE) in a standard regression problem. Our loss function is universally applicable, thus providing a general standard to evaluate the quality of any model/strategy that predicts the true-lift. We demonstrate that despite its novel definition, one can still perform gradient descent directly on this loss function to find the best fit. This leads to a new way to train any parameter-based model, such as deep neural networks, to solve causal machine-learning problems without going through the meta-learner strategy.
Proxy causal learning (PCL) is a method for estimating the causal effect of treatments on outcomes in the presence of unobserved confounding, using proxies (structured side information) for the confounder. This is achieved via two-stage regression: in the first stage, we model relations among the treatment and proxies; in the second stage, we use this model to learn the effect of treatment on the outcome, given the context provided by the proxies. PCL guarantees recovery of the true causal effect, subject to identifiability conditions. We propose a novel method for PCL, the deep feature proxy variable method (DFPV), to address the case where the proxies, treatments, and outcomes are high-dimensional and have nonlinear complex relationships, as represented by deep neural network features. We show that DFPV outperforms recent state-of-the-art PCL methods on challenging synthetic benchmarks, including settings involving high dimensional image data. Furthermore, we show that PCL can be applied to off-policy evaluation for the confounded bandit problem, in which DFPV also exhibits competitive performance.
Recent years have seen a boom in interest in machine learning systems that can provide a human-understandable rationale for their predictions or decisions. However, exactly what kinds of explanation are truly human-interpretable remains poorly understood. This work advances our understanding of what makes explanations interpretable under three specific tasks that users may perform with machine learning systems: simulation of the response, verification of a suggested response, and determining whether the correctness of a suggested response changes under a change to the inputs. Through carefully controlled human-subject experiments, we identify regularizers that can be used to optimize for the interpretability of machine learning systems. Our results show that the type of complexity matters: cognitive chunks (newly defined concepts) affect performance more than variable repetitions, and these trends are consistent across tasks and domains. This suggests that there may exist some common design principles for explanation systems.