Do you want to publish a course? Click here

FormulaZero: Distributionally Robust Online Adaptation via Offline Population Synthesis

219   0   0.0 ( 0 )
 Added by Aman Sinha
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Balancing performance and safety is crucial to deploying autonomous vehicles in multi-agent environments. In particular, autonomous racing is a domain that penalizes safe but conservative policies, highlighting the need for robust, adaptive strategies. Current approaches either make simplifying assumptions about other agents or lack robust mechanisms for online adaptation. This work makes algorithmic contributions to both challenges. First, to generate a realistic, diverse set of opponents, we develop a novel method for self-play based on replica-exchange Markov chain Monte Carlo. Second, we propose a distributionally robust bandit optimization procedure that adaptively adjusts risk aversion relative to uncertainty in beliefs about opponents behaviors. We rigorously quantify the tradeoffs in performance and robustness when approximating these computations in real-time motion-planning, and we demonstrate our methods experimentally on autonomous vehicles that achieve scaled speeds comparable to Formula One racecars.

rate research

Read More

We consider the problem of offline reinforcement learning with model-based control, whose goal is to learn a dynamics model from the experience replay and obtain a pessimism-oriented agent under the learned model. Current model-based constraint includes explicit uncertainty penalty and implicit conservative regularization that pushes Q-values of out-of-distribution state-action pairs down and the in-distribution up. While the uncertainty estimation, on which the former relies on, can be loosely calibrated for complex dynamics, the latter performs slightly better. To extend the basic idea of regularization without uncertainty quantification, we propose distributionally robust offline model-based policy optimization (DROMO), which leverages the ideas in distributionally robust optimization to penalize a broader range of out-of-distribution state-action pairs beyond the standard empirical out-of-distribution Q-value minimization. We theoretically show that our method optimizes a lower bound on the ground-truth policy evaluation, and it can be incorporated into any existing policy gradient algorithms. We also analyze the theoretical properties of DROMOs linear and non-linear instantiations.
218 - Qi Qi , Zhishuai Guo , Yi Xu 2020
In this paper, we propose a practical online method for solving a distributionally robust optimization (DRO) for deep learning, which has important applications in machine learning for improving the robustness of neural networks. In the literature, most methods for solving DRO are based on stochastic primal-dual methods. However, primal-dual methods for deep DRO suffer from several drawbacks: (1) manipulating a high-dimensional dual variable corresponding to the size of data is time expensive; (2) they are not friendly to online learning where data is coming sequentially. To address these issues, we transform the min-max formulation into a minimization formulation and propose a practical duality-free online stochastic method for solving deep DRO with KL divergence regularization. The proposed online stochastic method resembles the practical stochastic Nesterovs method in several perspectives that are widely used for learning deep neural networks. Under a Polyak-Lojasiewicz (PL) condition, we prove that the proposed method can enjoy an optimal sample complexity without any requirements on large batch size. Of independent interest, the proposed method can be also used for solving a family of stochastic compositional problems.
The label shift problem refers to the supervised learning setting where the train and test label distributions do not match. Existing work addressing label shift usually assumes access to an emph{unlabelled} test sample. This sample may be used to estimate the test label distribution, and to then train a suitably re-weighted classifier. While approaches using this idea have proven effective, their scope is limited as it is not always feasible to access the target domain; further, they require repeated retraining if the model is to be deployed in emph{multiple} test environments. Can one instead learn a emph{single} classifier that is robust to arbitrary label shifts from a broad family? In this paper, we answer this question by proposing a model that minimises an objective based on distributionally robust optimisation (DRO). We then design and analyse a gradient descent-proximal mirror ascent algorithm tailored for large-scale problems to optimise the proposed objective. %, and establish its convergence. Finally, through experiments on CIFAR-100 and ImageNet, we show that our technique can significantly improve performance over a number of baselines in settings where label shift is present.
Reinforcement Learning (RL) is an effective tool for controller design but can struggle with issues of robustness, failing catastrophically when the underlying system dynamics are perturbed. The Robust RL formulation tackles this by adding worst-case adversarial noise to the dynamics and constructing the noise distribution as the solution to a zero-sum minimax game. However, existing work on learning solutions to the Robust RL formulation has primarily focused on training a single RL agent against a single adversary. In this work, we demonstrate that using a single adversary does not consistently yield robustness to dynamics variations under standard parametrizations of the adversary; the resulting policy is highly exploitable by new adversaries. We propose a population-based augmentation to the Robust RL formulation in which we randomly initialize a population of adversaries and sample from the population uniformly during training. We empirically validate across robotics benchmarks that the use of an adversarial population results in a more robust policy that also improves out-of-distribution generalization. Finally, we demonstrate that this approach provides comparable robustness and generalization as domain randomization on these benchmarks while avoiding a ubiquitous domain randomization failure mode.
110 - Rad Niazadeh 2021
Motivated by online decision-making in time-varying combinatorial environments, we study the problem of transforming offline algorithms to their online counterparts. We focus on offline combinatorial problems that are amenable to a constant factor approximation using a greedy algorithm that is robust to local errors. For such problems, we provide a general framework that efficiently transforms offline robust greedy algorithms to online ones using Blackwell approachability. We show that the resulting online algorithms have $O(sqrt{T})$ (approximate) regret under the full information setting. We further introduce a bandit extension of Blackwell approachability that we call Bandit Blackwell approachability. We leverage this notion to transform greedy robust offline algorithms into a $O(T^{2/3})$ (approximate) regret in the bandit setting. Demonstrating the flexibility of our framework, we apply our offline-to-online transformation to several problems at the intersection of revenue management, market design, and online optimization, including product ranking optimization in online platforms, reserve price optimization in auctions, and submodular maximization. We show that our transformation, when applied to these applications, leads to new regret bounds or improves the current known bounds.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا