Hardware Architecture Proposal for TEDA algorithm to Data Streaming Anomaly Detection


Abstract in English

The amount of data in real-time, such as time series and streaming data, available today continues to grow. Being able to analyze this data the moment it arrives can bring an immense added value. However, it also requires a lot of computational effort and new acceleration techniques. As a possible solution to this problem, this paper proposes a hardware architecture for Typicality and Eccentricity Data Analytic (TEDA) algorithm implemented on Field Programmable Gate Arrays (FPGA) for use in data streaming anomaly detection. TEDA is based on a new approach to outlier detection in the data stream context. In order to validate the proposals, results of the occupation and throughput of the proposed hardware are presented. Besides, the bit accurate simulation results are also presented. The project aims to Xilinx Virtex-6 xc6vlx240t-1ff1156 as the target FPGA.

Download