No Arabic abstract
The problem of simulating complex quantum processes on classical computers gave rise to the field of quantum simulations. Quantum simulators solve problems, such as Boson sampling, where classical counterparts fail. In another field of physics, the unification of general relativity and quantum theory is one of the greatest challenges of our time. One leading approach is Loop Quantum Gravity (LQG). Here, we connect these two fields and design a linear-optical simulator such that the evolution of the optical quantum gates simulates the spinfoam amplitudes of LQG. It has been shown that computing transition amplitudes in simple quantum field theories falls into the class BQP -- which strongly suggests that computing transition amplitudes of LQG are classically intractable. Therefore, these amplitudes are efficiently computable with universal quantum computers which are, alas, possibly decades away. We propose here an alternative special-purpose linear-optical quantum computer, which can be implemented using current technologies. This machine is capable of efficiently computing these quantities. This work opens a new way to relate quantum gravity to quantum information and will expand our understanding of the theory.
This paper draws on a number of Roger Penroses ideas - including the non-Hamiltonian phase-space flow of the Hawking Box, Conformal Cyclic Cosmology, non-computability and gravitationally induced quantum state reduction - in order to propose a radically unconventional approach to quantum gravity: Invariant Set Theory (IST). In IST, the fundamental laws of physics describe the geometry of the phase portrait of the universe as a whole: quantum process are associated with fine-scale fractal geometry, gravitational process with larger-scale heterogeneous geometry. With this, it becomes possible to explain the experimental violation of Bell Inequalities without having to abandon key ingredients of general relativity: determinism and local causality. Ensembles in IST can be described by complex Hilbert states over a finite set $mathbb C_p$ of complex numbers, where $p$ is a large finite integer. The quantum mechanics of finite-dimensional Hilbert spaces is emergent as a singular limit when $p rightarrow infty$. A small modification to the field equations of general relativity is proposed to make it consistent with IST.
Recently a boundary energy-momentum tensor $T_{zz}$ has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an anomaly which is one-loop exact, $T_{zz}$ generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts $T_{zz}$.
We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors. This error tolerance inspires hope that variational quantum simulations of classically intractable molecules may be viable in the near future.
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. Along this line, a prime question is to find whether gravity is a quantum entity subject to the rules of quantum mechanics. It is fair to say that there are no feasible ideas yet to test the quantum coherent behaviour of gravity directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple correlation measurements between two spins: one embedded in each test mass. Fundamentally, the above entanglement is shown to certify the presence of non-zero off-diagonal terms in the coherent state basis of the gravitational field modes.
In this paper, we generalize Jordan-Lee-Preskill, an algorithm for simulating flat-space quantum field theories, to 3+1 dimensional inflationary spacetime. The generalized algorithm contains the encoding treatment, the initial state preparation, the inflation process, and the quantum measurement of cosmological observables at late time. The algorithm is helpful for obtaining predictions of cosmic non-Gaussianities, serving as useful benchmark problems for quantum devices, and checking assumptions made about interacting vacuum in the inflationary perturbation theory. Components of our work also include a detailed discussion about the lattice regularization of the cosmic perturbation theory, a detailed discussion about the in-in formalism, a discussion about encoding using the HKLL-type formula that might apply for both dS and AdS spacetimes, a discussion about bounding curvature perturbations, a description of the three-party Trotter simulation algorithm for time-dependent Hamiltonians, a ground state projection algorithm for simulating gapless theories, a discussion about the quantum-extended Church-Turing Thesis, and a discussion about simulating cosmic reheating in quantum devices.