No Arabic abstract
We consider four-dimensional, Riemannian, Ricci-flat metrics for which one or other of the self-dual or anti-self-dual Weyl tensors is type-D. Such metrics always have a valence-2 Killing spinor, and therefore a Hermitian structure and at least one Killing vector. We rederive the results of Przanowski and collaborators, that these metrics can all be given in terms of a solution of the $SU(infty)$-Toda field equation, and show that, when there is a second Killing vector commuting with the first, the method of Ward can be applied to show that the metrics can also be given in terms of an axisymmetric solution of the flat three-dimensional Laplacian. Thus in particular the field equations linearise. As a corollary, we show that the same technique linearises the field equations for a four-dimensional Einstein metric with anti-self-dual Weyl tensor and two commuting symmetries. Some examples of both constructions are given.
The asymptotic properties of the solutions to the Einstein-Maxwell equations with boost-rotation symmetry and Petrov type D are studied. We find series solutions to the pertinent set of equations which are suitable for a late time descriptions in coordinates which are well adapted for the description of the radiative properties of spacetimes (Bondi coordinates). By calculating the total charge, Bondi and NUT mass and the Newman-Penrose constants of the spacetimes we provide a physical interpretation of the free parameters of the solutions. Additional relevant aspects on the asymptotics and radiative properties of the spacetimes considered, such as the possible polarization states of the gravitational and electromagnetic field, are discussed through the way.
We introduce a combinatorial method to construct indefinite Ricci-flat metrics on nice nilpotent Lie groups. We prove that every nilpotent Lie group of dimension $leq6$, every nice nilpotent Lie group of dimension $leq7$ and every two-step nilpotent Lie group attached to a graph admits such a metric. We construct infinite families of Ricci-flat nilmanifolds associated to parabolic nilradicals in the simple Lie groups ${rm SL}(n)$, ${rm SO}(p,q)$, ${rm Sp}(n,mathbb R)$. Most of these metrics are shown not to be flat.
In this work, we consider a class of Finsler metrics using the warped product notion introduced by Chen, S. and Zhao (2018), with another warping, one that is consistent with static spacetimes. We will give the PDE characterization for the proposed metrics to be Ricci-flat and explicitly construct two non-Riemannian examples.
The complete class of conformally flat, pure radiation metrics is given, generalising the metric recently given by Wils.
We consider the class of locally boost isotropic spacetimes in arbitrary dimension. For any spacetime with boost isotropy, the corresponding curvature tensor and all of its covariant derivatives must be simultaneously of alignment type ${bf D}$ relative to some common null frame. Such spacetimes are known as type ${bf D}^k$ spacetimes and are contained within the subclass of degenerate Kundt spacetimes. Although, these spacetimes are $mathcal{I}$-degenerate, it is possible to distinguish any two type ${bf D}^k$ spacetimes, as the curvature tensor and its covariant derivatives can be characterized by the set of scalar polynomial curvature invariants for any type ${bf D}^k$ spacetime. In this paper we find all type ${bf D}^k$ spacetimes by identifying degenerate Kundt metrics that are of type ${bf D}^k$ and determining the precise conditions on the metric functions.