No Arabic abstract
We consider the influence of a spin accumulation in a normal metal on the magnetic statics and dynamics in an adjacent magnetic insulator. In particular, we focus on arbitary angles between the spin accumulation and the easy-axis of the magnetic insulator. Based on Landau-Lifshitz-Gilbert phenomenology supplemented with magnetoelectronic circuit theory, we find that the magnetic texture twists into a stable configuration that turns out to be described by a virtual, or image, domain wall configuration, i.e., a domain wall outside the ferromagnet. We show that even when the spin accumulation is perpendicular to the anisotropy axis, the magnetic texture develops a component parallel to the spin accumulation for sufficiently large spin bias. The emergence of this parallel component gives rise to threshold behavior in the spin Hall magnetoresistance and nonlocal magnon transport. This threshold can be used to design novel spintronic and magnonic devices that can be operated without external magnetic fields.
The interlayer van der Waals interaction in twisted bilayer graphene (tBLG) induces both in-plane and out-of-plane atomic displacements showing complex patterns that depend on the twist angle. In particular, for small twist angles, within each graphene layer, the relaxations give rise to a vortex-like displacement pattern which is known to affect the dispersion of the flat bands. Here, we focus on yet another structural property, the chirality of the twisted bilayer. We perform first-principles calculations based on density functional theory to investigate the properties induced by twist chirality in both real and momentum space. In real space, we study the interplay between twist chirality and atomic relaxation patterns. In momentum space, we investigate the spin textures around the $K$ points of the Brillouin zone, showing that alternating vortex-like textures are correlated with the chirality of tBLG. Interestingly, the helicity of each vortex is inverted by changing the chirality while the different twist angles also modify the spin textures. We discuss the origin of the spin textures by calculating the layer weights and using plot regression models.
Using one of the methods of quantum nonequilibrium statistical physics we have investigated the spin transport transverse to the normal metal/ferromagnetic insulator interface in hybrid nanostructures. An approximation of the effective parameters, when each of the interacting subsystems (electron spin, magnon, and phonon) is characterized by its own effective temperature have been considered. The generalized Bloch equations which describe the spin-wave current propagation in the dielectric have been derived. Finally, two sides of the spin transport coin have been revealed: the diffusive nature of the magnon motion and magnon relaxation processes, responsible for the spin pumping and the spin-torque effect.
Recent experiments demonstrating large spin-transfer torques in topological insulator (TI)-ferromagnetic metal (FM) bilayers have generated a great deal of excitement due to their potential applications in spintronics. The source of the observed spin-transfer torque, however, remains unclear. This is because the large charge transfer from the FM to TI layer would prevent the Dirac cone at the interface from being anywhere near the Fermi level to contribute to the observed spin-transfer torque. Moreover, there is yet little understanding of the impact on the Dirac cone at the interface from the metallic bands overlapping in energy and momentum, where strong hybridization could take place. Here, we build a simple microscopic model and perform first-principles-based simulations for such a TI-FM heterostructure, considering the strong hybridization and charge transfer effects. We find that the original Dirac cone is destroyed by the hybridization as expected. Instead, we find a new interface state which we dub descendent state to form near the Fermi level due to the strong hybridization with the FM states at the same momentum. Such a `descendent state carries a sizable weight of the original Dirac interface state, and thus inherits the localization at the interface and the same Rashba-type spin-momentum locking. We propose that the `descendent state may be an important source of the experimentally observed large spin-transfer torque in the TI-FM heterostructure.
While some of the most elegant applications of topological insulators, such as quantum anomalous Hall effect, require the preservation of Dirac surface states in the presence of time-reversal symmetry breaking, other phenomena such as spin-charge conversion rather rely on the ability for these surface states to imprint their spin texture on adjacent magnetic layers. In this work, we investigate the spin-momentum locking of the surface states of a wide range of monolayer transition metals (3$d$-TM) deposited on top of Bi$_{2}$Se$_{3}$ topological insulators using first principles calculations. We find an anticorrelation between the magnetic moment of the 3$d$-TM and the magnitude of the spin-momentum locking {em induced} by the Dirac surface states. While the magnetic moment is large in the first half of the 3$d$ series, following Hunds rule, the spin-momentum locking is maximum in the second half of the series. We explain this trend as arising from a compromise between intra-atomic magnetic exchange and covalent bonding between the 3$d$-TM overlayer and the Dirac surface states. As a result, while Cr and Mn overlayers can be used successfully for the observation of quantum anomalous Hall effect or the realization of axion insulators, Co and Ni are substantially more efficient for spin-charge conversion effects, e.g. spin-orbit torque and charge pumping.
In a topological insulator (TI)/magnetic insulator (MI) hetero-structure, large spin-orbit coupling of the TI and inversion symmetry breaking at the interface could foster non-planar spin textures such as skyrmions at the interface. This is observed as topological Hall effect in a conventional Hall set-up. While this effect has been observed at the interface of TI/MI, where MI beholds perpendicular magnetic anisotropy, non-trivial spin-textures that develop in interfacial MI with in-plane magnetic anisotropy is under-reported. In this work, we study Bi$_2$Te$_3$/EuS hetero-structure using planar Hall effect (PHE). We observe planar topological Hall and spontaneous planar Hall features that are characteristic of non-trivial in-plane spin textures at the interface. We find that the latter is minimum when the current and magnetic field directions are aligned parallel, and maximum when they are aligned perpendicularly within the sample plane, which maybe attributed to the underlying planar anisotropy of the spin-texture. These results demonstrate the importance of PHE for sensitive detection and characterization of non-trivial magnetic phase that has evaded exploration in the TI/MI interface.