Structural Indexing for Conjunctive Path Queries


Abstract in English

Structural indexing is an approach to accelerating query evaluation, whereby data objects are partitioned and indexed reflecting the precise expressive power of a given query language. Each partition block of the index holds exactly those objects that are indistinguishable with respect to queries expressible in the language. Structural indexes have proven successful for XML, RDF, and relational data management. In this paper we study structural indexing for conjunctive path queries (CPQ). CPQ forms the core of contemporary graph query languages such as SPARQL, Cypher, PGQL, and G-CORE. CPQ plays the same fundamental role with respect to contemporary graph query languages as the classic conjunctive queries play for SQL. We develop the first practical structural indexes for this important query language. In particular, we propose a structural index based on k-path-bisimulation, tightly coupled to the expressive power of CPQ, and develop algorithms for efficient query processing with our index. Furthermore, we study workload-aware structural indexes to reduce both the construction and space costs according to a given workload. We demonstrate through extensive experiments using real and synthetic graphs that our methods accelerate query processing by up to multiple orders of magnitude over the state-of-the-art methods, without increasing index size.

Download