We study the continuity in weighted Fourier Lebesgue spaces for a class of pseudodifferential operators, whose symbol has finite Fourier Lebesgue regularity with respect to $x$ and satisfies a quasi-homogeneous decay of derivatives with respect to the $xi$ variable. Applications to Fourier Lebesgue microlocal regularity of linear and nonlinear partial differential equations are given.
We consider nonlinear Schr{o}dinger equations in Fourier-Lebesgue and modulation spaces involving negative regularity. The equations are posed on the whole space, and involve a smooth power nonlinearity. We prove two types of norm inflation results. We first establish norm inflation results below the expected critical regularities. We then prove norm inflation with infinite loss of regularity under less general assumptions. To do so, we recast the theory of multiphase weakly nonlinear geometric optics for nonlinear Schr{o}dinger equations in a general abstract functional setting.
In this paper, we study the one-dimensional cubic nonlinear Schrodinger equation (NLS) on the circle. In particular, we develop a normal form approach to study NLS in almost critical Fourier-Lebesgue spaces. By applying an infinite iteration of normal form reductions introduced by the first author with Z. Guo and S. Kwon (2013), we derive a normal form equation which is equivalent to the renormalized cubic NLS for regular solutions. For rough functions, the normal form equation behaves better than the renormalized cubic NLS, thus providing a further renormalization of the cubic NLS. We then prove that this normal form equation is unconditionally globally well-posed in the Fourier-Lebesgue spaces $mathcal{F} L^p(mathbb{T})$, $1 leq p < infty$. By inverting the transformation, we conclude global well-posedness of the renormalized cubic NLS in almost critical Fourier-Lebesgue spaces in a suitable sense. This approach also allows us to prove unconditional uniqueness of the (renormalized) cubic NLS in $mathcal{F} L^p(mathbb{T})$ for $1leq p leq frac32$.
We prove the existence of ground state solutions for a class of nonlinear elliptic equations, arising in the production of standing wave solutions to an associated family of nonlinear Schrodinger equations. We examine two constrained minimization problems, which give rise to such solutions. One yields what we call $F_lambda$-minimizers, the other energy minimizers. We produce such ground state solutions on a class of Riemannian manifolds called weakly homogeneous spaces, and establish smoothness, positivity, and decay properties. We also identify classes of Riemannian manifolds with no such minimizers, and classes for which essential uniqueness of positive solutions to the associated elliptic PDE fails.
We develop a second-microlocal calculus of pseudodifferential operators in the semiclassical setting. These operators test for Lagrangian regularity of semiclassical families of distributions on a manifold $X$ with respect to a Lagrangian submanifold of $T^*X.$ The construction of the calculus, closely analogous to one performed by Bony in the setting of homogeneous Lagrangians, proceeds via the consideration of a model case, that of the zero section of $T^*mathbb{R}^n,$ and conjugation by appropriate Fourier integral operators. We prove a propagation theorem for the associated wavefront set analogous to Hormanders theorem for operators of real principal type. As an application, we consider the propagation of Lagrangian regularity on invariant tori for quasimodes (e.g. eigenfunctions) of an operator with completely integrable classical hamiltonian. We prove a secondary propagation result for second wavefront set which implies that even in the (extreme) case of Lagrangian tori with all frequencies rational, provided a nondegeneracy assumption holds, Lagrangian regularity either spreads to fill out a whole torus or holds nowhere locally on it.
We study the nonlinear Schrodinger equation with initial data in $mathcal{Z}^s_p(mathbb{R}^d)=dot{H}^s(mathbb{R}^d)cap L^p(mathbb{R}^d)$, where $0<s<min{d/2,1}$ and $2<p<2d/(d-2s)$. After showing that the linear Schrodinger group is well-defined in this space, we prove local well-posedness in the whole range of parameters $s$ and $p$. The precise properties of the solution depend on the relation between the power of the nonlinearity and the integrability $p$. Finally, we present a global existence result for the defocusing cubic equation in dimension three for initial data with infinite mass and energy, using a variant of the Fourier truncation method.