On the spatial and temporal non-locality of dynamo mean-field effects in supersonic interstellar turbulence


Abstract in English

The interstellar medium of the Milky Way and nearby disk galaxies harbours large-scale coherent magnetic fields of Microgauss strength, that can be explained via the action of a mean-field dynamo. As in our previous work, we aim to quantify dynamo effects that are self-consistently emerging in realistic direct magnetohydrodynamic simulations, but we generalise our approach to the case of a non-local (non-instantaneous) closure relation, described by a convolution integral in space (time). To this end, we leverage our comprehensive simulation framework for the supernova-regulated turbulent multi-phase interstellar medium. By introducing spatially (temporally) modulated mean fields, we extend the previously used test-field method to the spectral realm -- providing the Fourier representation of the convolution kernels. The resulting spectra of the dynamo mean-field coefficients that we obtain broadly match expectations and allow to rigorously constrain the degree of scale separation in the Galactic dynamo. A surprising result is found for the diamagnetic pumping term, which increases in amplitude when going to smaller scales. Our results amount to the most comprehensive description of dynamo mean-field effects in the Galactic context to date. Surveying the relevant parameter space and quenching behaviour, this will ultimately enable the development of assumption-free sub-grid prescriptions for otherwise unresolved global galaxy simulations.

Download