Do you want to publish a course? Click here

The measurement of the quadrupole moment of 185-Re and 187-Re from the hyperfine structure of muonic X rays

376   0   0.0 ( 0 )
 Added by Andreas Knecht
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The hyperfine splitting of the 5g -> 4f transitions in muonic 185,187-Re has been measured using high resolution HPGe detectors and compared to state-of-the-art atomic theoretical predictions. The spectroscopic quadrupole moment has been extracted using modern fitting procedures and compared to the values available in literature obtained from muonic X rays of natural rhenium. The extracted values of the nuclear spectroscopic quadrupole moment are 2.07(5) barn and 1.94(5) barn, respectively for 185-Re and 187-Re. This work is part of a larger effort at the Paul Scherrer Institut towards the measurement of the nuclear charge radii of radioactive elements.



rate research

Read More

120 - P. Filianin , C. Lyu , M. Door 2021
The cyclotron frequency ratio of $^{187}mathrm{Os}^{29+}$ to $^{187}mathrm{Re}^{29+}$ ions was measured with the Penning-trap mass spectrometer PENTATRAP. The achieved result of $R=1.000:000:013:882(5)$ is to date the most precise such measurement performed on ions. Furthermore, the total binding-energy difference of the 29 missing electrons in Re and Os was calculated by relativistic multiconfiguration methods, yielding the value of $Delta E = 53.5(10)$ eV. Finally, using the achieved results, the mass difference between neutral $^{187}$Re and $^{187}$Os, i.e., the $Q$ value of the $beta^-$ decay of $^{187}$Re, is determined to be 2470.9(13) eV.
Cross sections of the $^{186}$W, $^{187}$Re, $^{188}$Os($gamma,n$) reactions were measured using quasi-monochromatic photon beams from laser Compton scattering (LCS) with average energies from 7.3 to 10.9 MeV. The results are compared with the predictions of Hauser-Feshbach statistical calculations using four different sets of input parameters. In addition, the inverse neutron capture cross sections were evaluated by constraining the model parameters, especially the $E1$ strength function, on the basis of the experimental data. The present experiment helps to further constrain the correction factor $F_{sigma}$ for the neutron capture on the 9.75 keV state in $^{187}$Os. Implications of $F_{sigma}$ to the Re-Os cosmochronology are discussed with a focus on the uncertainty in the estimate of the age of the Galaxy.
We performed $^{185/187}$Re nuclear quadrupole resonance (NQR) measurements under pressure to investigate the superconducting properties of noncentrosymmetric superconductor Cd$_{2}$Re$_{2}$O$_{7}$ under various crystal structures. The pressure dependence of superconducting transition temperature $T_{rm c}$ determined through ac susceptibility measurements is consistent with the results of previous resistivity measurements [T. C. Kobayashi $et al$., J. Phys. Soc. Jpn. 80, 023715 (2011).]. Below 2.2 GPa, in the nuclear spin-lattice relaxation rate $1/T_{1}$, a clear coherence peak was observed just below $T_{rm c}$, indicating conventional $s$-wave superconductivity. In contrast, the coherence peak disappears at 3.1 GPa, suggesting a change in superconducting symmetry to the $p$-wave dominant state against pressure.
The hyperfine (hf) transition rates for muonic atoms have been re-measured for select light nuclei, using neutron detectors to evaluate the time dependence of muon capture. For $^{19}$F $Lambda$$_{h}$ = 5.6 (2) $mu$s$^{-1}$ for the hf transition rate, a value which is considerably more accurate than previous measurements. Results are also reported for Na, Al, P, Cl, and K; that result for P is the first positive identification.
140 - M. De Rydt , G. Neyens , K. Asahi 2009
he electric quadrupole coupling constant of the 31Al ground state is measured to be nu_Q = |eQV_{zz}/h| = 2196(21)kHz using two different beta-NMR (Nuclear Magnetic Resonance) techniques. For the first time, a direct comparison is made between the continuous rf technique and the adiabatic fast passage method. The obtained coupling constants of both methods are in excellent agreement with each other and a precise value for the quadrupole moment of 31Al has been deduced: |Q(31Al)| = 134.0(16) mb. Comparison of this value with large-scale shell-model calculations in the sd and sdpf valence spaces suggests that the 31Al ground state is dominated by normal sd-shell configurations with a possible small contribution of intruder states. The obtained value for |Q(31Al)| and a compilation of measured quadrupole moments of odd-Z even-N isotopes in comparison with shell-model calculations shows that the proton effective charge e_p=1.1 e provides a much better description of the nuclear properties in the sd-shell than the adopted value e_p=1.3 e.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا