Do you want to publish a course? Click here

Entanglement and quantum tomography with top quarks at the LHC

58   0   0.0 ( 0 )
 Added by Yoav Afik
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Entanglement is a central subject in quantum mechanics. Due to its genuine relativistic behavior and fundamental nature, high-energy colliders are attractive systems for the experimental study of fundamental aspects of quantum mechanics. We propose the detection of entanglement between the spins of top-antitop-quark pairs at the LHC, representing the first proposal of entanglement detection in a pair of quarks, and also the entanglement observation at the highest energy scale so far. We show that entanglement can be observed by direct measurement of the angular separation between the leptons arising from the decay of the top-antitop pair. The detection can be achieved with high statistical significance, using the current data recorded during Run 2 at the LHC. In addition, we develop a simple protocol for the quantum tomography of the top-antitop pair. This experimental technique reconstructs the quantum state of the system, providing a new experimental tool to test theoretical predictions. Our work explicitly implements canonical experimental techniques in quantum information in a two-qubit high-energy system, paving the way to use high-energy colliders to also study quantum information aspects.



rate research

Read More

139 - Karol Krizka , Abhishek Kumar , 2012
A very light scalar top (stop) superpartner is motivated by naturalness and electroweak baryogenesis. When the mass of the stop is less than the sum of the masses of the top quark and the lightest neutralino superpartner, as well as the of the masses of the lightest chargino and the bottom quark, the dominant decay channels of the stop will be three-body, four-body, or flavour violating. In this work, we investigate the direct and indirect constraints on a light stop, we compute the relative decay branching fractions to these channels, and we study the sensitivity of existing LHC searches to each of them.
This report describes the studies performed for the Snowmass Top algorithms and detectors High Energy Frontier Study Group.
We analyze the phenomenology of the top-pion and top-Higgs states in models with strong top dynamics, and translate the present LHC searches for the Standard Model Higgs into bounds on these scalar states. We explore the possibility that the new state at a mass of approximately 125 GeV observed at the LHC is consistent with a neutral pseudoscalar top-pion state. We demonstrate that a neutral pseudoscalar top-pion can generate the diphoton signal at the observed rate. However, the region of model parameter space where this is the case does not correspond to classic topcolor-assisted technicolor scenarios with degenerate charged and neutral top-pions and a top-Higgs mass of order twice the top mass; rather, additional isospin violation would need to be present and the top dynamics would be more akin to that in top seesaw models. Moreover, the interpretation of the new state as a top-pion can be sustained only if the ZZ (four-lepton) and WW (two-lepton plus missing energy) signatures initially observed at the 3? level decline in significance as additional data is accrued.
137 - Andrew Chamblin 2009
LHC is expected to be a top quark factory. If the fundamental Planck scale is near a TeV, then we also expect the top quarks to be produced from black holes via Hawking radiation. In this paper we calculate the cross sections for top quark production from black holes at the LHC and compare it with the direct top quark cross section via parton fusion processes at next-to-next-to-leading order (NNLO). We find that the top quark production from black holes can be larger or smaller than the pQCD predictions at NNLO depending upon the Planck mass and black hole mass. Hence the observation of very high rates for massive particle production (top quarks, higgs or supersymmetry) at the LHC may be an useful signature for black hole production.
We develop a new method for tagging jets produced by hadronically decaying top quarks. The method is an application of shower deconstruction, a maximum information approach that was previously applied to identifying jets produced by Higgs bosons that decay to bottom quarks. We tag an observed jet as a top jet based on a cut on a calculated variable that is an approximation to the ratio of the likelihood that a top jet would have the structure of the observed jet to the likelihood that a non-top QCD jet would have this structure. We find that the shower deconstruction based tagger can perform better in discriminating boosted top quark jets from QCD jets than other publicly available tagging algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا