Do you want to publish a course? Click here

Benzonitrile as a proxy for benzene in the cold ISM: low temperature rate coefficients for CN + C$_6$H$_6$

178   0   0.0 ( 0 )
 Added by Ilsa Cooke
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The low temperature reaction between CN and benzene (C$_6$H$_6$) is of significant interest in the astrochemical community due to the recent detection of benzonitrile, the first aromatic molecule identified in the interstellar medium (ISM) using radio astronomy. Benzonitrile is suggested to be a low temperature proxy for benzene, one of the simplest aromatic molecules, which may be a precursor to polycyclic aromatic hydrocarbons (PAHs). In order to assess the robustness of benzonitrile as a proxy for benzene, low temperature kinetics measurements are required to confirm whether the reaction remains rapid at the low gas temperatures found in cold dense clouds. Here, we study the C$_6$H$_6$ + CN reaction in the temperature range 15--295 K, using the well-established CRESU technique (a French acronym standing for Reaction Kinetics in Uniform Supersonic Flow) combined with Pulsed Laser Photolysis-Laser-Induced Fluorescence (PLP-LIF). We obtain rate coefficients, $k(T)$, in the range (3.6--5.4) $times$ 10$^{-10}$ cm$^3$ s$^{-1}$ with no obvious temperature dependence between 15--295 K, confirming that the CN + C$_6$H$_6$ reaction remains rapid at temperatures relevant to the cold ISM.



rate research

Read More

Electronic spectra of C$_6$H are measured in the $18,950-21,100$ cm$^{-1}$ domain using cavity ring-down spectroscopy of a supersonically expanding hydrocarbon plasma. In total, 19 (sub)bands of C$_6$H are presented, all probing the vibrational manifold of the B$^2Pi$ electronically excited state. The assignments are guided by electronic spectra available from matrix isolation work, isotopic substitution experiments (yielding also spectra for $^{13}$C$_6$H and C$_6$D), predictions from ab initio calculations as well as rotational fitting and vibrational contour simulations using the available ground state parameters as obtained from microwave experiments. Besides the $0_0^0$ origin band, three non-degenerate stretching vibrations along the linear backbone of the C$_6$H molecule are assigned: the $ u_6$ mode associated with the C-C bond vibration and the $ u_4$ and $ u_3$ modes associated with C$equiv$C triple bonds. For the two lowest $ u_{11}$ and $ u_{10}$ bending modes, a Renner-Teller analysis is performed identifying the $mu^2Sigma$($ u_{11}$) and both $mu^2Sigma$($ u_{10}$) and $kappa^2Sigma$($ u_{10}$) components. In addition, two higher lying bending modes are observed, which are tentatively assigned as $mu^2Sigma$($ u_9$) and $mu^2Sigma$($ u_8$) levels. In the excitation region below the first non-degenerate vibration ($ u_6$), some $^2Pi-^{2}Pi$ transitions are observed that are assigned as even combination modes of low-lying bending vibrations. The same holds for a $^2Pi-^{2}Pi$ transition found above the $ u_6$ level. From these spectroscopic data and the vibronic analysis a comprehensive energy level diagram for the B$^2Pi$ state of C$_6$H is derived and presented.
The evidence for benzonitrile (C$_6$H$_5$CN}) in the starless cloud core TMC-1 makes high-resolution studies of other aromatic nitriles and their ring-chain derivatives especially timely. One such species is phenylpropiolonitrile (3-phenyl-2-propynenitrile, C$_6$H$_5$C$_3$N), whose spectroscopic characterization is reported here for the first time. The low resolution (0.5 cm$^{-1}$) vibrational spectrum of C$_6$H$_5$C$_3$N} has been recorded at far- and mid-infrared wavelengths (50 - 3500 cm$^{-1}$) using a Fourier Transform interferometer, allowing for the assignment of band centers of 14 fundamental vibrational bands. The pure rotational spectrum of the species has been investigated using a chirped-pulse Fourier transform microwave (FTMW) spectrometer (6 - 18 GHz), a cavity enhanced FTMW instrument (6 - 20 GHz), and a millimeter-wave one (75 - 100 GHz, 140 - 214 GHz). Through the assignment of more than 6200 lines, accurate ground state spectroscopic constants (rotational, centrifugal distortion up to octics, and nuclear quadrupole hyperfine constants) have been derived from our measurements, with a plausible prediction of the weaker bands through calculations. Interstellar searches for this highly polar species can now be undertaken with confidence since the astronomically most interesting radio lines have either been measured or can be calculated to very high accuracy below 300 GHz.
We have studied the evolution, with hydrostatic pressure, of the recently discovered superconductivity in the graphite intercalation compounds C$_6$Yb and C$_6$Ca. We present pressure-temperature phase diagrams, for both superconductors, established by electrical transport and magnetization measurements. In the range 0-1.2 GPa the superconducting transition temperature increases linearly with pressure in both materials with $dT_c/dP = +0.39 K/GPa$ and $dT_c/dP = +0.50 K/GPa$ for C$_6$Yb and C$_6$Ca respectively. The transition temperature in C$_6$Yb, which has beenmeasured up to 2.3 GPa, reaches a peak at around 1.8 GPa and then starts to drop. We also discuss how this pressure dependence may be explained within a plasmon pairing mechanism.
We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$AsF$_6$ (TMTSF : tetramethyl-tetraselenafulvalene). The 4 K neutron scattering structure refinement of the fully deuterated (TMTSF)$_2$PF$_6$-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)$_2$PF$_6$-H12 salt previously determined at the same temperature. Surprisingly it is found that deuteration corresponds to the application of a negative pressure of 5 x 10$^2$ MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF$_6$ and AsF$_6$ salts. Two different thermal behaviors have been distinguished. Low-Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies {theta}$_E$ = 8.3 K and {theta}$_E$ = 6.7 K for the PF$_6$-D12 and AsF$_6$-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large-Bragg-angle measurements evidence an unexpected structural change around 55 K which probably corresponds to the linkage of the anions to the methyl groups via the formation of F...D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)$_2$PF$_6$ is dominated by the librational motion of the PF$_6$ units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: {theta}$_E$ = 50 K and {theta}$_E$ = 76 K for the PF$_6$-D12 and PF$_6$-H12 salts, respectively.
We study the transport properties of the Kondo insulator SmB$_6$ with a specialized configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. We find that as the material is cooled below 4 K, it exhibits a crossover from bulk to surface conduction with a fully insulating bulk. We take the robustness and magnitude of the surface conductivity, as is manifest in the literature of SmB$_6$, to be strong evidence for the topological insulator metallic surface states recently predicted for this material.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا