Characterisation of polyhedral products with finite generalised Postnikov decomposition


Abstract in English

A generalised Postnikov tower for a space $X$ is a tower of principal fibrations with fibres generalised Eilenberg-MacLane spaces, whose inverse limit is weakly homotopy equivalent to $X$. In this paper we give a characterisation of a polyhedral product $Z_K(X,A)$ whose universal cover either admits a generalised Postnikov tower of finite length, or is a homotopy retract of a space admitting such a tower. We also include $p$-local and ration

Download