Interaction signatures and non-Gaussian photon states from a strongly driven atomic ensemble coupled to a nanophotonic waveguide


Abstract in English

We study theoretically a laser-driven one-dimensional chain of atoms interfaced with the guided optical modes of a nanophotonic waveguide. The period of the chain and the orientation of the laser field can be chosen such that emission occurs predominantly into a single guided mode. We find that the fluorescence excitation line shape changes as the number of atoms is increased, eventually undergoing a splitting that provides evidence for the waveguide-mediated all-to-all interactions. Remarkably, in the regime of strong driving the light emitted into the waveguide is non-classical, with a significant negativity of the associated Wigner function. We show that both the emission properties and the non-Gaussian character of the light are robust against voids in the atom chain, enabling the experimental study of these effects with present-day technology. Our results offer a route towards novel types of fiber-coupled quantum light sources and an interesting perspective for probing the physics of interacting atomic ensembles through light.

Download