Do you want to publish a course? Click here

Semiconductor quantum plasmonics

308   0   0.0 ( 0 )
 Added by Angela Vasanelli
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the frontier between classical and quantum plasmonics in highly doped semiconductor layers. The choice of a semiconductor platform instead of metals for our study permits an accurate description of the quantum nature of the electrons constituting the plasmonic response, which is a crucial requirement for quantum plasmonics. Our quantum model allows us to calculate the collective plasmonic resonances from the electronic states determined by an arbitrary one-dimensional potential. Our approach is corroborated with experimental spectra, realized on a single quantum well, in which higher order longitudinal plasmonic modes are present. We demonstrate that their energy depends on the plasma energy, as it is also the case for metals, but also on the size confinement of the constituent electrons. This work opens the way towards the applicability of quantum engineering techniques for semiconductor plasmonics.



rate research

Read More

Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits based on variable super-semi junctions.
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.
Semiconductor quantum-dot spin qubits are a promising platform for quantum computation, because they are scalable and possess long coherence times. In order to realize this full potential, however, high-fidelity information transfer mechanisms are required for quantum error correction and efficient algorithms. Here, we present evidence of adiabatic quantum-state transfer in a chain of semiconductor quantum-dot electron spins. By adiabatically modifying exchange couplings, we transfer single- and two-spin states between distant electrons in less than 127 ns. We also show that this method can be cascaded for spin-state transfer in long spin chains. Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95 for the experimental parameters studied here. In the future, state and process tomography will be required to verify the transfer of arbitrary single qubit states with a fidelity exceeding the classical bound. Adiabatic quantum-state transfer is robust to noise and pulse-timing errors. This method will be useful for initialization, state distribution, and readout in large spin-qubit arrays for gate-based quantum computing. It also opens up the possibility of universal adiabatic quantum computing in semiconductor quantum-dot spin qubits.
151 - Y. Benny , R. Presman , Y.Kodriano 2013
We use temporally resolved intensity cross-correlation measurements to identify the biexciton-exciton radiative cascades in a negatively charged QD. The polarization sensitive correlation measurements show unambiguously that the excited two electron triplet states relax non-radiatively to their singlet ground state via a spin non conserving flip-flop with the ground state heavy hole. We explain this mechanism in terms of resonant coupling between the confined electron states and an LO phonon. This resonant interaction together with the electron-hole exchange interaction provides an efficient mechanism for this, otherwise spin-blockaded, electronic relaxation.
Recent improvements in materials growth and fabrication techniques may finally allow for superconducting semiconductors to realize their potential. Here we build on a recent proposal to construct superconducting devices such as wires, Josephson junctions, and qubits inside and out-of single crystal silicon or germanium. Using atomistic fabrication techniques such as STM hydrogen lithography, heavily-doped superconducting regions within a single crystal could be constructed. We describe the characteristic parameters of basic superconducting elements---a 1D wire and a tunneling Josephson junction---and estimate the values for boron-doped silicon. The epitaxial, single-crystal nature of these devices, along with the extreme flexibility in device design down to the single-atom scale, may enable lower-noise or new types of devices and physics. We consider applications for such super-silicon devices, showing that the state-of-the-art transmon qubit and the sought-after phase-slip qubit can both be realized. The latter qubit leverages the natural high kinetic inductance of these materials. Building on this, we explore how kinetic inductance based particle detectors (e.g., photon or phonon) could be realized with potential application in astronomy or nanomechanics. We discuss super-semi devices (such as in silicon, germanium, or diamond) which would not require atomistic fabrication approaches and could be realized today.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا