Do you want to publish a course? Click here

Fault detection and isolation for linear structured systems

127   0   0.0 ( 0 )
 Added by Jiajia Jia
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper deals with the fault detection and isolation (FDI) problem for linear structured systems in which the system matrices are given by zero/nonzero/arbitrary pattern matrices. In this paper, we follow a geometric approach to verify solvability of the FDI problem for such systems. To do so, we first develop a necessary and sufficient condition under which the FDI problem for a given particular linear time-invariant system is solvable. Next, we establish a necessary condition for solvability of the FDI problem for linear structured systems. In addition, we develop a sufficient algebraic condition for solvability of the FDI problem in terms of a rank test on an associated pattern matrix. To illustrate that this condition is not necessary, we provide a counterexample in which the FDI problem is solvable while the condition is not satisfied. Finally, we develop a graph-theoretic condition for the full rank property of a given pattern matrix, which leads to a graph-theoretic condition for solvability of the FDI problem.



rate research

Read More

Designing a static state-feedback controller subject to structural constraint achieving asymptotic stability is a relevant problem with many applications, including network decentralized control, coordinated control, and sparse feedback design. Leveraging on the Projection Lemma, this work presents a new solution to a class of state-feedback control problems, in which the controller is constrained to belong to a given linear space. We show through extensive discussion and numerical examples that our approach leads to several advantages with respect to existing methods: first, it is computationally efficient; second, it is less conservative than previous methods, since it relaxes the requirement of restricting the Lyapunov matrix to a block-diagonal form.
Robustness and reliability are two key requirements for developing practical quantum control systems. The purpose of this paper is to design a coherent feedback controller for a class of linear quantum systems suffering from Markovian jumping faults so that the closed-loop quantum system has both fault tolerance and H-infinity disturbance attenuation performance. This paper first extends the physical realization conditions from the time-invariant case to the time-varying case for linear stochastic quantum systems. By relating the fault tolerant H-infinity control problem to the dissipation properties and the solutions of Riccati differential equations, an H-infinity controller for the quantum system is then designed by solving a set of linear matrix inequalities (LMIs). In particular, an algorithm is employed to introduce additional noises and to construct the corresponding input matrices to ensure the physical realizability of the quantum controller. For real applications of the developed fault-tolerant control strategy, we present a linear quantum system example from quantum optics, where the amplitude of the pumping field randomly jumps among different values. It is demonstrated that a quantum H-infinity controller can be designed and implemented using some basic optical components to achieve the desired control goal.
This paper investigates the H2 and H-infinity suboptimal distributed filtering problems for continuous time linear systems. Consider a linear system monitored by a number of filters, where each of the filters receives only part of the measured output of the system. Each filter can communicate with the other filters according to an a priori given strongly connected weighted directed graph. The aim is to design filter gains that guarantee the H2 or H-infinity norm of the transfer matrix from the disturbance input to the output estimation error to be smaller than an a priori given upper bound, while all local filters reconstruct the full system state asymptotically. We provide a centralized design method for obtaining such H2 and H-infinity suboptimal distributed filters. The proposed design method is illustrated by a simulation example.
This paper proposes a data-driven control framework to regulate an unknown, stochastic linear dynamical system to the solution of a (stochastic) convex optimization problem. Despite the centrality of this problem, most of the available methods critically rely on a precise knowledge of the system dynamics (thus requiring off-line system identification and model refinement). To this aim, in this paper we first show that the steady-state transfer function of a linear system can be computed directly from control experiments, bypassing explicit model identification. Then, we leverage the estimated transfer function to design a controller -- which is inspired by stochastic gradient descent methods -- that regulates the system to the solution of the prescribed optimization problem. A distinguishing feature of our methods is that they do not require any knowledge of the system dynamics, disturbance terms, or their distributions. Our technical analysis combines concepts and tools from behavioral system theory, stochastic optimization with decision-dependent distributions, and stability analysis. We illustrate the applicability of the framework on a case study for mobility-on-demand ride service scheduling in Manhattan, NY.
We provide out-of-sample certificates on the controlled invariance property of a given set with respect to a class of black-box linear systems. Specifically, we consider linear time-invariant models whose state space matrices are known only to belong to a certain family due to a possibly inexact quantification of some parameters. By exploiting a set of realizations of those undetermined parameters, verifying the controlled invariance property of the given set amounts to a linear program, whose feasibility allows us to establish an a-posteriori probabilistic certificate on the controlled invariance property of such a set with respect to the nominal linear time-invariant dynamics. The proposed framework is applied to the control of a networked multi-agent system with unknown weighted graph.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا