Do you want to publish a course? Click here

On the regularity of Mathers $beta$-function for standard-like twist maps

75   0   0.0 ( 0 )
 Added by David Sauzin
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider the minimal average action (Mathers $beta$ function) for area preserving twist maps of the annulus. The regularity properties of this function share interesting relations with the dynamics of the system. We prove that the $beta$-function associated to a standard-like twist map admits a unique $C^1$-holomorphic complex extension, which coincides with this function on the set of real diophantine frequencies.



rate research

Read More

241 - Jianlu Zhang 2020
For strictly convex billiard maps of smooth boundaries, we get a Birkhoff normal form via a list of constructive generating functions. Based on this, we get an explicit formula for the beta function (locally), and explored the relation between the spectral invariants of the billiard maps and the beta function.
281 - Peizheng Yu , Zhihong Xia 2021
Poincares last geometric theorem (Poincare-Birkhoff Theorem) states that any area-preserving twist map of annulus has at least two fixed points. We replace the area-preserving condition with a weaker intersection property, which states that any essential simple closed curve intersects its image under $f$ at least at one point. The conclusion is that any such map has at least one fixed point. Besides providing a new proof to Poincares geometric theorem, our result also has some applications to reversible systems.
We study the run length function for intermittency maps. In particular, we show that the longest consecutive zero digits (resp. one digits) having a time window of polynomial (resp. logarithmic) length. Our proof is relatively elementary in the sense that it only relies on the classical Borel-Cantelli lemma and the polynomial decay of intermittency maps. Our results are compensational to the ErdH{o}s-R{e}nyi law obtained by Denker and Nicol in cite{dennic13}.
76 - Luna Lomonaco 2020
We show that the definition of parabolic-like map can be slightly modified, by asking $partial Delta$ to be a quasiarc out of the parabolic fixed point, instead of the dividing arcs to be $C^1$ on $[-1,0]$ and $[0,1]$.
258 - Lin Wang 2014
In this paper, we show that for exact area-preserving twist maps on annulus, the invariant circles with a given rotation number can be destroyed by arbitrarily small Gevrey-$alpha$ perturbations of the integrable generating function in the $C^r$ topology with $r<4-frac{2}{alpha}$, where $alpha>1$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا